

CONCEPT OF SUPPLEMENTING VENTILATION BY GAS PHASE AIR CLEANING.

Clean Air Delivery Rate (CADR)

- CADR = $\varepsilon_{PAQ} \cdot Q_{AP} \cdot (3,6/V)$
- · where:
- $\pmb{\epsilon}_{clean}$ or $\pmb{\epsilon}_{PAQ.}$ is the air cleaning efficiency
- Q_{AP} is the air flow through the air cleaner, l/s;
- is the volume of the room, m³.

Air Cleaning Efficiency

• $\epsilon_{clean} = 100(C_U - C_D)/C_D$

where:

7

- $\mathbf{\epsilon}_{clean}$ is the air cleaning efficiency
- C_U is the gas concentration before air cleaner
- C_D is the gas concentration after air cleaner.

• Higher Air Quality Category

 $\varepsilon_{PAQ} = Q_0 / Q_{AP} \cdot (PAQ / PAQ_{AP} - 1) \cdot 100$

where:

- + $~~\epsilon_{PAQ}~~$ is the air cleaning efficiency for perceived air quality;
- * Q_o is the ventilation rate without air cleaner, l/s;
- Q_{AP} is the ventilation rate with air cleaner, l/s;
- PAQ is the perceived air quality without the air cleaner, accepted air quality without the air cleaner, decipol

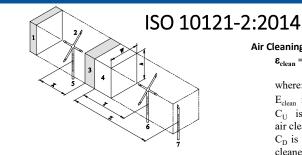
Testing Gas Phase Air Cleaners Standards

- ISO 10121-2:2013 "Test methods for assessing the performance of gas-phase air cleaning media and devices for general ventilation - Part 2: Gas-phase air cleaning devices (GPACD)"
- ISO 10121-1:2014 "Test method for assessing the performance of gas-phase air cleaning media and devices for general ventilation - Part 1: Gas-phase air cleaning media"
- ANSI/ASHRAE Standard 145.2-2016 "Laboratory Test Method for Assessing the Performance of Gas-Phase Air-Cleaning Systems: Air-Cleaning Devices" (first edition in 2011)
- ANSI/ASHRAE Standard 145.1-2015 "Laboratory Test Method for Assessing the Performance of Gas-Phase Air-Cleaning Systems: Loose Granular Media" (first edition in 2008)

TESTING OF GAS PHASE AIR CLEANERS

Air Cleaning Efficiency

where:

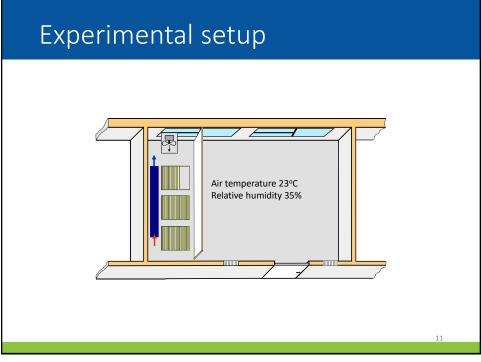

air cleaner

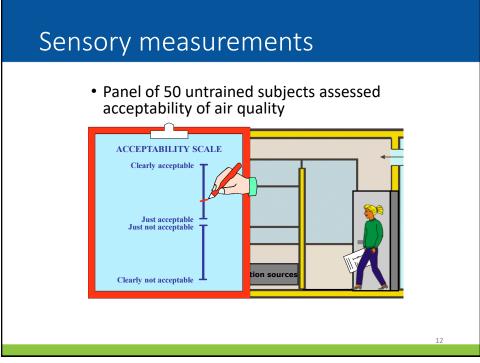
cleaner.

 $\varepsilon_{clean} = 100(C_U - C_D)/C_D$

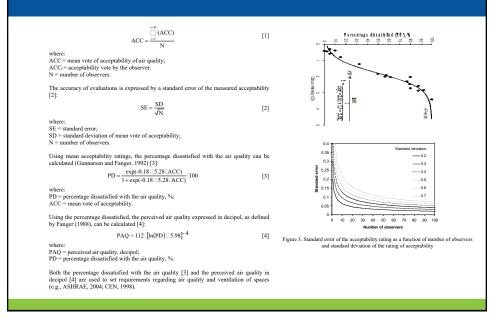
 $\mathrm{E}_{\mathrm{clean}}\,$ is the air cleaning efficiency C_U is the gas concentration before

 C_D is the gas concentration after air

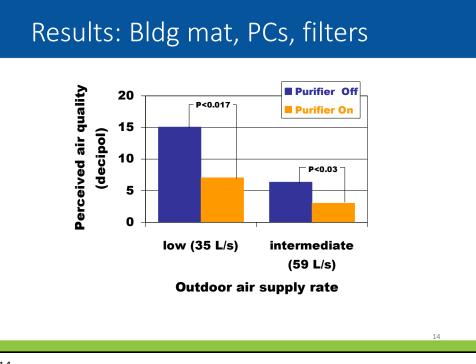


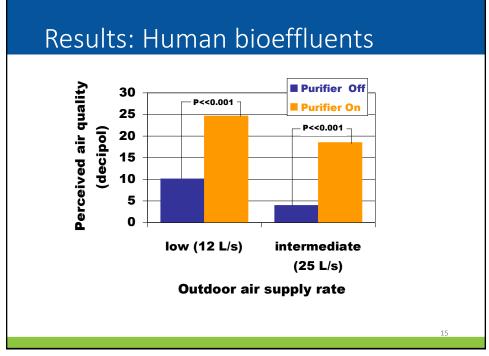

Key 1 2

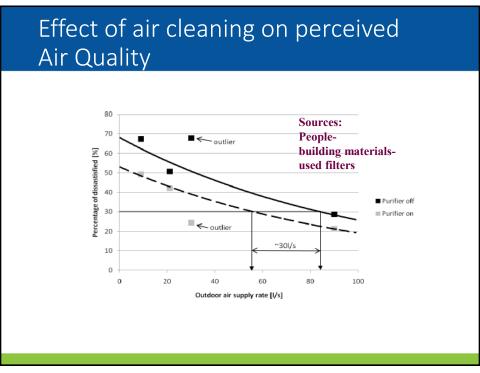
- diffusor and Δp device sampling points should be of "fork" type or similar with multiple inlet points to make a compounded sample over the whole cross section
- GPACD under test 3
- GPACD section of test duct 4
- upstream sampling point for TU, RHU, pU and CU at X mm before the GPACD 5
- 6 Downstream sampling point for T_D , RH_D , p_D and C_D at Y mm after the GPACD
- 7
- *Q*, air flow rate sampling point at *Z* mm after the GPACD internal width of the test duct along the GPACD section, 3+4 W
- internal height of the test duct along the GPACD section, 3+4 h

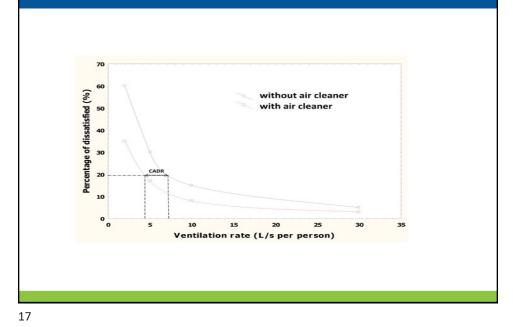

Figure 1 — Normative section of test stand showing ducting, measurement parameters and sampling points

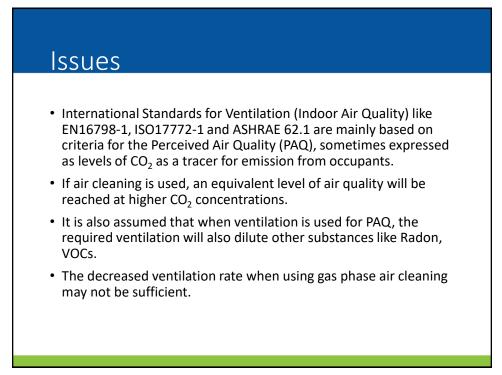
PERCEIVED	AIR QUALITY
INTERNATIONAL ISO STANDARD 16000-28	Test Panel Trained Untrained Odour Acceptance Intensity Hedonic tone Examples of diffuser and mask used for odour evaluation
Indoor air — Part 28: Determination of odour emissions from building products using test chambers Air Intérieur — Partie 28: Détermination des émissions d'odeurs des produits de construction au moyen de chambres d'essai	Figure 2.1 – Diffuer






PERCEIVED AIR QUALITY





Clean Air Delivery rate per person

ΔCO_2 levels considering a 30 % reduced ventilation rate due to air cleaners

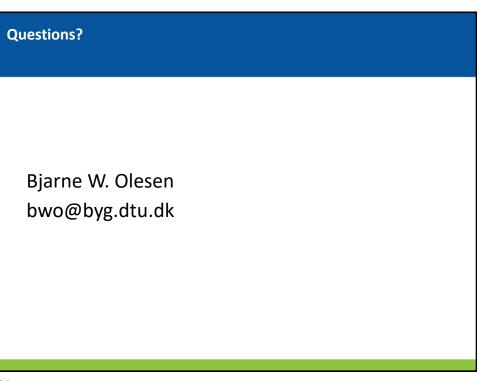
Space type Single office	Occupancy [m ² per person]	Category	Derived from qtot	
			Very low-polluting building	Low-polluting building
			Indoor CO ₂ level above outdoor level $\triangle CO_2$ [ppm]	
Without air cleaner	10	IEQI	370	278
		IEQu	529	397
		IEQui	926	694
		IEQIV	1389 (1010)	1010 (794)
With air cleaner	10	IEQ	529	397
		IEQu	756	567
		IEQIII	1323 (1029)	992 (817)
		IEQIV	1984 (1100)	1443 (911)

19

<section-header><list-item><list-item><list-item><list-item><list-item>

Testing Issues

- If only a test with chemical measurements is done, should it be allowed to reduce the building component?
- How to standardise the building source?
- How to standardise the human bio effluent source?
- What if human source is Chinese persons and testing panel is Danish persons?
- It is a relative measurement, which makes some of the issues less important


21

ENERGY USE-INDOOR ENVIRONMENT

- Reduced Energy Use
 - Heating/Cooling of Supply Air
 - Reduced energy for humidification and/or De-humidification
 - Fan Energy
 - Energy Use of Air Cleaner
 - Heat Recovery or not
- Noise level
 - Reduced air flow in AHU
 - Noise from air cleaner
- Draught level
 - Reduced air flow in occupied space
 - Draught from portable air cleaner

Conclusion

- A concept for substituting part of the required ventilation with gas phase air cleaning technology has been presented
- There is a need for new testing standards that considers perceived air quality and human emissions as a source.
- The energy impact of using gas phase air cleaning must be studied further. By reducing the ventilation rate energy use can be reduced for:
 - pre-heating or pre-cooling of outside supply air
 - humidifying or de-humidifying
 - fan energy for air transport
- Energy use may be increased due to:
 - Additional fan energy for stand-alone air cleaners
 - Additional fan energy due to increased pressure drop over the device
 - Reduced potential for cooling by outside air
- It must be verified that the reduced ventilation rate is still high enough to dilute individual contaminants.
- Adjusted CO₂ criteria must be used to express the indoor air quality and to use for demand-controlled ventilation.

