About ECES TCP

Mission and scope

The TCP-ECES mission is to contribute in the energy transition toward a renewable energy based energy system by:

- Joint R&D + pre-standardisation work.
- Scope:
 - heating, cooling & electricity;
 - Central & Decentralised
About ECES TCP

- Current high-priority themes for energy storage in ECES
 - **Thermal energy** (for cooling & heating):
 - Underground energy storage
 - Compact thermal storage
 - **Electrical energy**:
 - integration aspects in grids,
 - Storage in buildings and electric mobility
 - **Modelling**:
 - improve position of energy storage in models
The transition of our energy system

- **Smart Grids**: remote operation, DSM, Variable rates and tariffs, gamification
- **Central Renewable Energy Production**: Wind, Hydro, Large Solar, Bio-energy
- **Data Management & Control**: “Prosumerification”
- **Energy Storage**: Local energy consumption and renewable production connected
- **Energy Management**: Heat/Cold and Electricity (electrical vehicles)

“Old model”
The transition of our energy system

- Abundant (variable) renewable energy production

- (Changing) variable load profiles
Focus on storage and flexibility

- **Development**

 - Historical focus mainly on production and energy savings for heating, cooling and electricity consumption
 - New domain: matching variable production and variable load profiles (+increased cooling demand and EV)
 - Sector coupling required for comprehensive approach (P2C, P2H, P2P, P2M2P, etc)

 → Position of Energy Storage and Flexibility:

 (Variable) renewable Production \[\rightarrow\] Storage & Flexibility \[\leftrightarrow\] Load / demand profiles
Storage and Cooling

- Developments Cold Storage
 - Decentralised options:
 - mainly for office buildings
 - proven technology
 - Example: Japan
 Abeno HARUKAS Buld. (OSAKA)
Storage and Cooling

- **Developments Cold Storage**
 - Centralised options:
 - Mainly district cooling
 - Using UTES (Underground storage) / Aquifers
 - Proven technology
 - Example: Netherlands
 - Greenhouses and office districts
Storage and Cooling

- Value ($/€) and economics:
 - Value for storage determined by:
 - Cooling load / (additional) electricity cost for infrastructure
 - High dependency on day/night rates electricity
 - Economics require:
 - Dynamic pricing
 - Long term stability in pricing structure
Challenge #7: affordable heating and cooling

Increased international effort to address need for decarbonisation of fast growing heating and cooling demand.

- Priority areas like:
 - Energy storage (TES- heating / cooling)
 - Heatpumps
 - Cooling / heat rejection
 - Predictive maintenance

- Work plan under development
Technology Collaboration Programmes

Thank you

Website: www. https://iea-eces.org

Teun Bokhoven
teunbokhoven@consolair.nl