

Bill Livingood

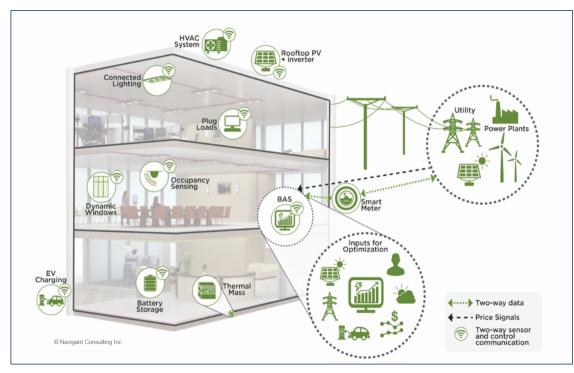
November 12, 2019

Commercial Buildings Research Infrastructure: A Sandbox For Utilities and Building Owners to Evaluate Traditional Energy Savings and Other Non-Traditional Benefits

Bill Livingood, NREL

Stephanie H. Johnson, U.S. Department of Energy

November 12, 2019



Outline

- Grid-interactive Efficient Buildings (GEB) Overview
- Commercial Buildings Research Infrastructure (CBRI) introduction
- How CBRI helps answer GEB questions
- Upcoming projects

Grid-interactive Efficient Buildings (GEB)

Example of a Grid-interactive Efficient Building (GEB) communicating with the utility.

Why Buildings?

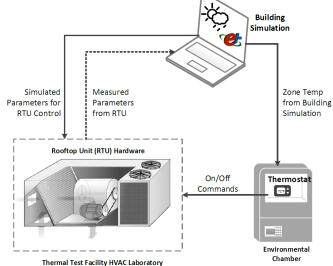
- 75% of electricity is consumed by buildings
- 80% of electric peak demand is due to buildings

Research Questions:

- How do we improve the technical maturity of GEB technologies?
- What will the connection between buildings and the utility look like?

Issues:

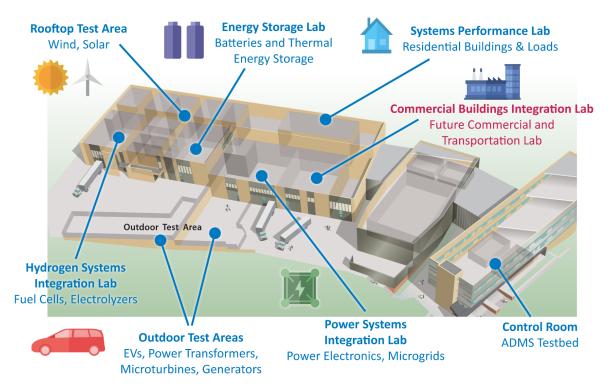
- Interoperability
- Advanced control
- Demand-side management


Hardware-in-the-Loop

Hardware-in-the-Loop (HIL): A technique that combines hardware and simulation in continuous feedback loop to explore complex scenarios in a controlled environment.

Credit: https://www.altus.af.mil/News/Art/igphoto/2000940295/

Flight Simulator: The original HIL

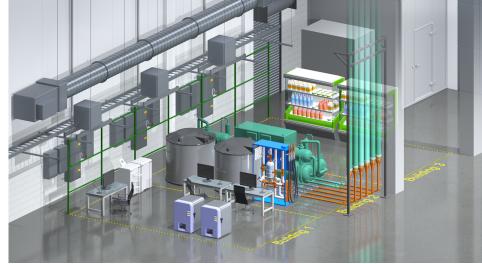

HVAC HIL: An application of HIL for buildings research.

RTU hardware operated in a realistic fashion without need for physical building and real climate.

ESIF Resources and Laboratories

ESIF Equipment:

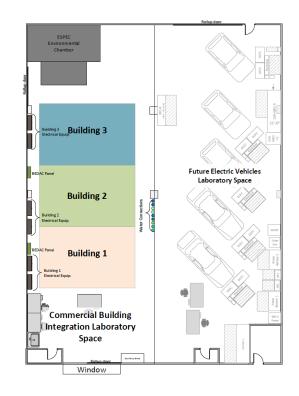
- 100 ton chiller loop
- 62.5 ton boiler loop
- 2 MW Grid simulator
- 1.5 MW DC simulator
- 1 MW load bank
- 12 EV charging stations
- Research electric distribution bus (REDB) can connect laboratories electrically



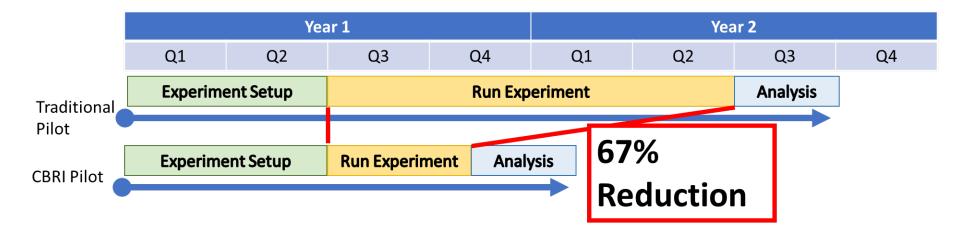
CBRI Approach

The Commercial Buildings Research

Infrastructure will provide a flexible research platform that takes advantage of hardware-in-the-loop functionality for gridinteractive efficient buildings, specifically in these key focus areas:


- Intelligent efficiency
- Interoperability
- Advanced controls
- Flexibility of demand-side management

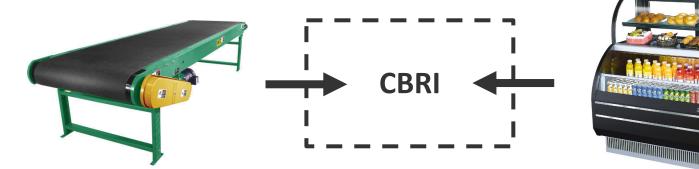
CBRI Capabilities


Features of the CBRI:

- Electrical infrastructure for 3 buildings
- Integrated data acquisition system collects data, controls equipment, real-time visualization
- Connections to grid and PV simulators and other distributed energy resources (DER) for grid interactivity research
- Communication/control link to HVAC Lab enables hardware-in-the-loop testing of HVAC equipment
- Building Automation System Testbed
- Connection to building energy simulations platform
- Integration with other ESIF labs and resources

ComEd/CLEAResult & DOE

- 5-8 commercial building technologies evaluated for energy efficiency in 2 years
 - Goal of 67% reduction in experiment time per technology
- Additional funding from DOE to evaluate GEB potential of some of the technologies

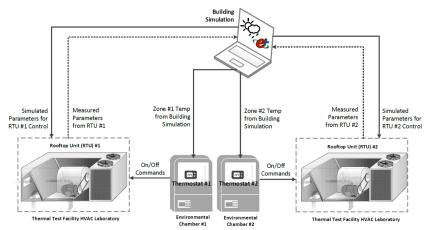


ComEd/CLEAResult & DOE Technology Selections

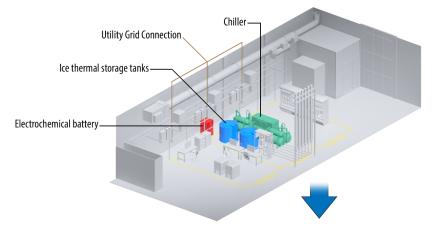
<u>**ComEd/CLEAResult Research Question**</u>: How much energy will be saved by replacing traditional induction motors on conveyors with advanced, high efficiency motors?

ComEd/CLEAResult Research Question: How

much energy will be saved by replacing traditional refrigerated cases with alternative refrigerant cases?

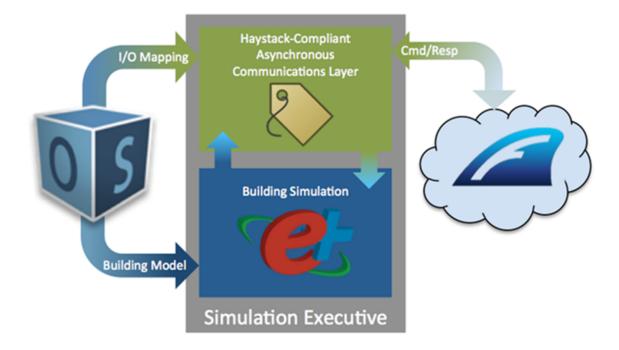


DOE Research Question: Are customers willing to reduce load of conveyors in response to a utility request?


DOE Research Question: How can a building owner coordinate control of multiple cases to respond to a utility request?

Other Funded Projects

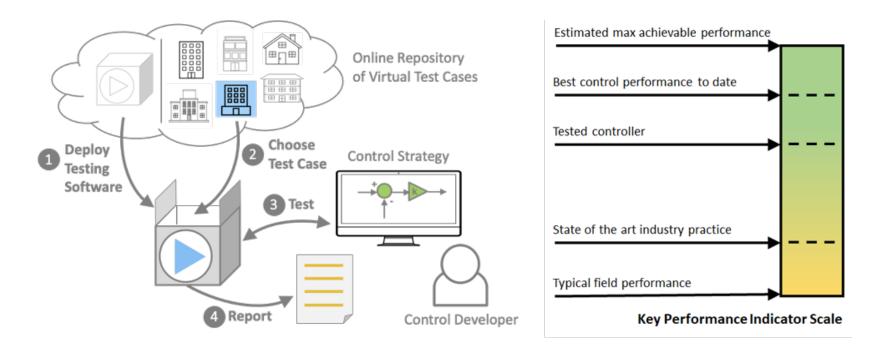
• RTU Coordination


Behind-the-meter Storage

Research Question: What energy savings are possible by coordinating rooftop units?

Research Question: When should the thermal energy storage be charged and when should electrochemical battery be charged to minimize overall costs and energy usage?

Controls effectiveness evaluation


"Alfalfa"

	alfalfastack.net		i 0 » +	••		alfalf	astack.net 🔿	0) 🗇 » .
Alfalfa		SITES S	SIMULATIONS	Alf	alfa				SIMULATIONS
					Name	Site Reference	Status	Time	
			- 1		Large Office	329afe00- 8c45-4c46- 87e1-	Stopped		
			- 1		Simulation Pa	arameters			
	Select OpenStudio or EnergyPlus File		- 1		_{Begin} April 12th 10:45 a	im	_{End} May 14th 10:45 a	m	_ 1
	Large Office - System 7.osm	_	- 1	Timescale 5 ©			Realtime Simulation		
	ADD SITE SIMULATE		- 1						_ 1
			- 1	- 16-		_	_	CANCEL	RUN
			- 1						
			- 1						
		_	_						

Real or Simulated?

BOPTEST (Building Operations Testing) Framework

The BOPTEST (Building Operations Testing) Framework is a set of simulated buildings and a standard API for manipulating their sensor and actuator "control points" for comparing and benchmarking the performance of control and FDD algorithms.

https://www.energy.gov/eere/buildings/boptest-building-operations-testing-framework

Questions?

CBRI Related Questions

Grant Wheeler Grant.wheeler@nrel.gov Grant.wheeler@nrel.gov

DOE Related Questions

Stephanie Johnson stephanie.johnson@ee.doe.gov