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Grid-Interactive Efficient
Building Definition
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Opportunities

Interactions with counterparts (urban district, infrastructure, and
environment) provide opportunities for:

Improvements of building performance such as net energy use,
emissions, occupant comfort, and operational cost.

Support infrastructure planning such as transportation system,
water systems and the electric power grid

Shaping the future structure of smart cities
— Buildings more than shelters — connected and adaptable
— District level resource sharing to reduce waste
— Facilitate multi-modal and autonomous transportation
— Real-time tracking of energy use, water use, and emissions
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Challenges

Validation of degree and characteristics of load flexibility
given participating technologies

Assessing monetary value of load flexibility and reward
mechanism by building type

Control and characterization of aggregated flexibility

Evaluation of interaction between building energy use and
occupant comfort along different time scales
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Demand Flexibility Building Load Curves
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Grid Interactive Efficient Building Load Curves
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Source:

RMI report 2018. https://rmi.org/demand-

flexibility-can-grow-market-renewable-energy/
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Source:

RMI report 2018. https://rmi.org/demand-

flexibility-can-grow-market-renewable-energy/
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Commercial Building
Participation in Energy
and FR Markets

Greg Pavlak (CU) & Gregor Henze (CU/NREL)



Frequency Regulation Estimation

An illustrative example: How much FR at 13:007?
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FR Estimation: Repeat from 9:00-16:00
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Multi-Market Optimization Overview
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Medium Office Results: Impact of Target Limit
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Portfolio Multi-Market Optimization

Source:

Pavlak, G. S., Henze, G. P., & Cushing, V. J.
(2015). Evaluating synergistic effect of
optimally controlling commercial building

thermal mass portfolios. Energy, 84, 161-176.
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Residential Directed
Thermal Mass
Optimization

Charles Corbin (CU) & Gregor Henze
(CU/NREL)



Grid Model Description

Houston Los Angeles New York
Cooling Degree Days base 50 4043 2674 1911
Cooling Degree Days base 65 1667 343 543
Nominal voltage (kV) 22.9 12.47 12.47
Nominal load (MW) 12 7.8 7.4
Commercial transformers 14 0 6
Industrial transformers 0 0 0
Agricultural transformers 0 107 0
Residential transformers 284 1491 396
Number of residences 2146 1326 1506
Percent of residential consumption 80% 78% 86%
Air conditioning penetration 98% 94% 79%
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Source: Corbin, C. D., & Henze, G. P.
(2017). Predictive control of residential
HVAC and its impact on the grid. Part I:
simulation framework and

models. Journal of Building Performance
Simulation, 10(3), 294-312.
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Directed Optimization: Load Shaping
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Houston 70% High Solar Penetration




Houston 70% High Solar Penetration July 1

Houston Los Angeles New York
70% 30% 70% 30% 70% 30%

Electric Consumption [MWh] 4.87 2.07 0.70 0.31 2.38 1.03

Peak Demand [MW] 015 -009 | 000 000 | -0.03 -0.02
Peak to Valley [%] 8426 9147 | 99.38 99.62 | 91.19 95.70
Load Factor [%] 3.02 140 | 094 048 | 213 1.00
Ramp [MW] 023 -059 | 005 -002| -001 -0.11
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Source:
Corbin, C. D., & Henze, G. P. (2017). Predictive control of
residential HVAC and its impact on the grid. Part II: simulation
studies of residential HVAC as a supply following resource. Journal
of Building Performance Simulation, 10(4), 365-377.
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Directed MPC Summary

Models fast and light weight to allow for PCT deployment
Residential HVAC Directed MPC

Most effective at short term variations in demand
Methodology can be extended to other loads

Distributed but directed MPC can be implemented

More controlled and predicable than price-based optimization
Improvements in all metrics except consumption

Limited by

Flexible cooling demand

— Storage efficiency

Model accuracy
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Valuation of Demand
Flexibility

Robert Cruickshank (CU/NREL), Anthony
Florita (NREL), Gregor Henze (CU/NREL)



Does Residential Load Shaping Provide S Savings?
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Value of Demand Flexibility
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Houston 50% PV: ARLS A/C, Battery, DHW Heater
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Relationship b/w Energy
Efficiency and DR

Zahra Fallahi (CU), Gregor Henze
(CU/NREL), Elaine Hale (NREL), Matt
Leach (NREL)
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Bayesian Calibration of GEB Flexibility
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Deep Reinforcement
Learning Control for GEB

Andrey Bernstein (NREL), Gregor Henze
(CU/NREL), Emiliano Dall’Anese (CU),
Peter Graf (NREL), Xin Jin (NREL)



Multiobjective Deep RLC for GEB
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Planned RLC Testbed Architecture
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NREL CU RASEI Joint Professional MS

CU Boulder — corveniently located n
Colorado’s enewable energy ndustry hub
— offers a new opportunity to leam about
cutting-edge technology developed to
make our world more sustainable through
emeging, nterconnected power and
enemgy systems.

Vvith rapid energy sector iransformation bringing

new opporhmilies for power and energy syslems
engmeers, the Department of Bectrical, Computer
and Energy Engmeering (ECHF) expands s
professonal cowse offermgs to mchude a new Master
of Science MS) degree—stating in fall 200—

What’s the Next Generation?

Renewable energy sources, such as wind and solar,
areincreasingly being integrated into the electric
power grid, while the power system becomes

more tightly intertwined with other systems,

such as buildings, natural gas pipelines, and the
transportation sector.

Today's rapid changes create industry demand for
il who

new power
improved modeling and i

and of in
et T eTela e

for 1]
meesing or related engineesing or scientif ¢
backgmmds.

Instructors from CU Boulder' s facullty and National
Enengy

offer fve core courses and numerous electives for

the 30-credit howr plepare with

the specialized knowledge required to practice gnd

nlegralion of renewable energy

the impacts of variability and uncertainty in power
systems generation.

CU’s new master's program helps engineers and

decision makers prepare for this next generation—

with deep foundational knowledge, modern technical

skillsets, and the ability to effectively participate in
idiscif teamsto solv

Applications are due by December 1 for full-time, part-time, and online course options.
For more information, visit colorado_edw eceefnextgen-power-systems

RAS]  BeBoulder.

Program Features

Future-focused Research

Adjoint professors from NREL
teach program courses with

CU faculty to bring practical
industry knowledge to classroom
discussions. Students have
opportunities to explore energy
systems integration themes from
the Renewable and Sustainable
Energy Institute (RASEI), a joint
program between CU Boulder
and NREL that addresses
important, complex problems in
energy to expedite solutions that
transform energy by i

Instructors from CU’s faculty and NREL prepare students for new opportunities in
power and energy systems engineering.

Curriculum

Renewable Energy and the Future Power Grid

renewable energy science,
engineering, and analysis through
research, education, and industry
partnerships.

Transforming

Colorado’s Renewable
Energy Hub

The CU Boulder campus offers
students opportunities to live an
outdoor, active lifestyle while learn-
ing in Colorado’s growing hub for
renewable energy. Sunshine, wind,
and new opportunities are abun-
dant—with research taking place in
nearby organizations and industry
applications powering systems all
along the Rocky Mountain Front
Range.

Study Online

Many of the Next-
Generation Power
and Energy Systems

courses offer distance-
learning options through CU
Boulder’s Graduate School.

For more information visit,
colorado.

Introduction to Power Electronics

Power System Analysis

Distribution System Analysis

Power System Operations and Planning

Building Electrical Systems

Building Energy System Modeling and Control

The Business of Sustainable Energy

Decision Making for Modern Power and Energy Systems.

Cybersecurity Policy OR other relevant cybersecurity courses

Distributed Electrical Generation

Energy Policy in the 21st Century

Grid-Connected Systems

Modeling and Control of Power Electronics Systems

Modeling of Urban Energy Systems

Optimization of Energy Systems

Power System Communications

Power System Dynamics and Control

Photovoltaic Power Electronics Laboratory

Power Electronics for Electric Drive Vehicles

UNVERSITY OF COLORADO BOULDER.

Electrical, Computer & Energy Engineering
L]

IINREL

In NGPES

RASE|  BeBoulder.

REL
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