Supporting A Fast Track Mission-Critical Campus Healthcare Expansion

JUAN M. ONTIVEROS, P.E.
AVP – UTILITIES, ENERGY AND FACILITIES MANAGEMENT
New Campus Master Plan
5.5 million SF Completed June 2012
New Medical School

Master Plan
Completed April 2013
Phase 1
1 million square feet

Phase 2 - 1,200,000 square feet in 5 to 10 years

Table 2a. Dell Medical School Program
<table>
<thead>
<tr>
<th>PROGRAM ELEMENT</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education and Administration Building</td>
<td>75,000</td>
</tr>
<tr>
<td>Research Building and Vivarium</td>
<td>240,000</td>
</tr>
<tr>
<td>MOB Phase 1</td>
<td>200,000</td>
</tr>
<tr>
<td>Parking Structure (1,000 spaces)</td>
<td>325,000</td>
</tr>
<tr>
<td>Intra-Professional Education (IPE)*</td>
<td>+/- 50,000</td>
</tr>
</tbody>
</table>

*Not included in Phase 1 planning budget.

Table 2b. Teaching Hospital and MOB Program
<table>
<thead>
<tr>
<th>PROGRAM ELEMENT</th>
<th>GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital (220 beds)</td>
<td>480,000</td>
</tr>
</tbody>
</table>
Methodology

Develop Utility Master Plan in 3 months

• Used building type & actual metered energy use per GSF for existing campus buildings
 • Estimate annual & peak energy & water needs
 • Determine plant total capacity & rate impact

• Used Termis chilled water and steam model
 • Size and plan distribution system

• Include build out of 2.2 million SF for Phase 2&3

• Include 1 million more new square feet on the campus
Over Arching Objectives

• New chilling station
 • Capacity & efficiency enough to prevent negative impact to campus
 • Expandable to address subsequent phases of district
 • Continue philosophy of loops & redundant service

• What is impact of other new space?

• Avoid power plant expansion

• Avoid conflict between Peak Steam and Peak Power
Projected Loads

• Main Campus Load Growth
 • 6,000 Tons

• Phase I
 • Dell Medical School;
 • 7,000 Tons, 6 MW, 30,000 lbs/hr

• Hospital
 • 1,700 Tons, 30,000 lbs/hr

• Phase II- Medical School
 • 5,100 Tons, 4MW, 25,000 lbs/hr
Capacity

• Chilled Water System
 • 15,000 tons chilled water
 • 6 -2,500 ton chillers
 • 5°F approach cooling tower
 • Expandable to 20k tons
• 5.5 million gallon TES
• Stratified Water
• Dedicated pumping
• More than 5 MW load shifting capacity
Capacity

• Chilled Water
 • Proven Existing System
 • Tunnel + Direct Buried
 • Station Redundancy

• Heating Water
 • New System
 • Fuel Diversity
 • Geographic Diversity

• Single Points of Failure
 • N+1 pumps and tower cells
 • Looped Piping
 • Main tie main switchgear
Resiliency

• Multiple Water Sources
 • Recovered
 • Reclaimed
 • Irrigation
 • Domestic

• O&M Considerations
 • Bridge crane and monorails
 • Standardize components
 • Catwalks

• PLC Control Systems
 • Programming for failure
Efficiency

• Water
 • Recovered Water System
 • Heat Pump Chiller
 • 17,000,000 gal/year + Chemicals

• Gas
 • Heat Pump Chillers
 • $287,000/ year

• Electricity
 • Optimization
 • Maintain the “Sweet Spot”
 • Pumping in harmony
 • Up to 25,000,000 kWh/year savings vs. conventional plant
CS7 / TES-2 BENEFITS

• Lower campus annual kW/ton
 • 4 years at .64 kW/ton annual average
 • New plant expected at .55 KW/ton

• Offset 6 MW of peak demand
 • Avoids additional CHP capacity need

• Improves campus hydraulics

• Off-loads plants in need of renewal

• Room for expansion
 • 5,000 tons more
 • 1,800 tons / 30 MMBtu with HPC’s
 • 12 MMBtu via boiler