Towards Net Zero Energy Resilient Public Communities

IEA ECB Annex 73 Working Phase Experts Meeting

Dr. Alexander Zhivov US Army Engineer Research and Development Center, Champaign, IL USA

Rüdiger Lohse KEA- Climate protection and energy agency of Baden- Württemberg GmbH, Germany

April 17, 2018 Frankfurt, Germany

Scope

Decision-making process and a computer based modeling tools for achieving net zero energy resilient publicly owned (1) communities (military garrisons, universities, public housing, etc.)

(1)- assumption: multiple ownership should not add complexity

Objectives

- Energy Targets on building and community level: definitions, matrix, monetary values
- summarize, develop and catalog representative building models by building use type, applicable to national public communities/military garrisons building stocks
- Data-Base of Power and Thermal Energy Generation, Distribution and Storage Scenarios
- Guidance for Net Zero Energy Master Planning
- Generate integrative NZP Tool to effectively model and identify optimum energysupport infrastructures that ensure sustainment of mission critical functions for neighborhoods
- Generate implementation models considering business, financial and legal aspects for NZE master planning for public communities
- Provide dissemination and training in participating countries and the end users, mainly decision makers, community planners and energy managers and other market partners in the proceedings and work of the Annex subtasks.

Important Definitions

• "The Net Zero energy community term denotes an energy configuration in which the amount of fossil fuel-based energy used over the course of a year is equal to the amount of energy from renewable energy sources that are exported from this community to a power or thermal grid for external users' consumption. Under this definition, net zero balance includes a combination of thermal and electrical energies presented in terms of primary (source) energy used;"

 "An Energy Resilient Community provides energy services required for missioncritical facilities (e.g., hospitals, datacenters, shelters, dining facilities, etc.) by planning for, withstanding, adapting to, and recovering from disruptions, both natural and manmade. The prioritization of energy services under limited resources is based on a multi-scenario, all-hazards view of how energy services lead to mission achievement for these facilities.

Receptors

- Decision makers, planners, building owners, architects, engineers, energy managers and mission operators of public-owned and operated communities e.g.:
 - National Armed Forces through their Infrastructure Components, military garrisons,
 - University and high school campuses,
 - Hospitals and public housing which are responsible for all costs related to new construction, renovation and O&M.
 - Neigborhoods, quartiers
- Industry, energy service companies, architects, engineers and financiers supporting public communities

Annex Structure

Subtask A	Collect and Evaluate Input Data for Energy Master Plan (EMP)
Subtask B	Collect Existing Case Studies and implement Pilot Studies
Subtask C	Describe existing and innovative technologies, architecture and calculation tools for performance analysis (including resilience) of central energy systems (power and thermal)
Subtask D	Develop Guidance for Net Zero Energy Master Planning
Subtask E	Develop a functional modeling tool to facilitate the Net Zero Energy Resilient Communities Master Planning Process
Subtask F	Business, legal and financial aspects of Net Zero Energy Master Planning.

Subtask A: Energy Targets

- Definition of specific decision making criteria, e.g.,
 - Site or end energy
 - Source or primary energy
 - Energy Efficiency
 - Energy Security
 - Energy Independence
 - Energy Resilience
 - Reliability of Energy Systems
- Definition of other non- energetic targets (comfort, functionality)
- Decision making Matrix
- Monetary value of the energy and other targets

Subtask A: Example of energy targets (EUI) based on building activities and climate

		E	UIs by	/ Buil	ding 1	ype	by Clim	ate Zon	e (kB	tu/ft:	2-yr)								
ASHRAE 100 #	Commercial Building Type	Army Building Type										8							
1	Admin/professional office	Type	31	32	31	34	26	31	26	37	32	32	38	34	31	43	38	46	65
1A	Company Operations Facility	14185	28	31	29	33	22	29	23	41	32	33	47	34	35	57	48	63	76
3	Government Office	19331.3290	39	40	39	42	33	38	34	46	39	40	48	42	39	54	47	58	81
3A	Brigade Headquarters	14182	59	58	55	57	50	54	50	61	55	53	66	58	53	74	65	79	90
38	Battalion Headquarters	14183	36	37	36	38	30	35	31	42	36	37	44	38	36	50	44	53	76
5	Mixed-use office	199-1-1-9	36	37	36	38	30	36	31	42	37	38	45	38	36	50	44	54	75
6	Other Office	1.197.284	30	31	30	32	26	30	26	35	30	31	38	32	30	42	37	45	62
7	Laboratory	Charles .	142	141	137	140	118	132	127	155	138	143	167	150	145	186	169	199	265
8	Distribution / shipping center	(and the second	10	13	13	16	9	14	11	22	18	18	29	24	19	39	32	48	90
9	Non-refrigerated warehouse		5	6	6	8	4	7	6	10	9	9	14	11	10	19	15	23	43
29	Other classroom education	proper prove	20	20	20	20	14	19	17	23	20	21	26	22	22	30	26	32	48
30	Fast Food	Contraction of the	235	241	237	249	213	239	228	275	252	256	299	271	266	328	300	354	447
30A	Dining Facility	72210	351	361	351	362	311	350	321	384	361	354	410	365	362	452	417	492	573
31	Restaurant/cafeteria	and bear	127	131	127	135	113	129	123	149	136	140	161	147	149	176	163	192	243
32	Other food services	Sector States	69	71	69	74	62	70	68	82	75	77	88	80	82	96	89	104	131
34	Dormitory/fraternity/sorority	and the Files	36	39	38	42	28	39	36	52	43	49	59	50	47	68	59	77	107
35A	Unaccompanied Enlisted Personnel Housing	72111	59	61	63	61	48	58	49	61	56	52	65	62	53	74	67	80	97
36	Hotel	norma dest	45	46	43	47	42	44	43	50	47	47	51	50	48	55	53	59	68
37	Motel or inn	resident species	50	48	47	46	43	45	41	47	45	43	48	45	44	50	47	51	62
38	Other lodging	ere and and	48	45	45	44	41	43	40	44	43	41	45	43	42	48	45	50	59
46	Other Service	-orthood	48	48	46	47	40	45	43	52	47	48	57	50	49	62	57	67	90
46A	Tactical Equipment Maintenance Facility	21410	37	41	44	64	37	54	39	92	68	74	119	99	79	158	128	180	239
43	Repair shop	(+n)+hay	22	22	22	22	18	21	20	25	22	22	26	24	23	30	27	32	42
44	Vehicle service/repair shop	a set hat have	26	26	26	26	22	25	23	29	26	26	31	28	26	34	31	37	49
45	Vehicle storage/maintenance	in the second second	11	11	11	11	10	10	10	13	11	11	14	12	12	15	14	16	22
50	Single family, detached	5.145 S	22	24	24	26	18	24	22	32	27	30	37	30	29	42	37	48	66
51	Single family, attached	Constants.	26	27	27	30	20	28	26	37	31	34	42	35	34	48	42	54	77
52	Apartment, 2-4 units	Sector Land	38	40	40	45	30	41	38	54	46	51	62	52	49	71	62	81	11:
53	Apartment, 5 or more units	and and a	26	27	27	30	20	28	26	37	31	34	42	35	34	48	42	54	77

Subtask A. Resiliency Matrix and Energy System Attributes

Mission Critical Facility Energy Requirements

- Uptime,
- % of energy delivered,
- Power/thermal energy quality requirements,
- fuel storage requirements/ minimum operation time

Energy System Attributes

- Robustness,
- Redundancy,
- Reliability,
- Responsiveness,
- Resourcefulness/efficiency

Subtask A. Types of Threats

- Abnormal Threats:
 - Fire,
 - Strong Winds,
 - Hurricane,
 - Tornado
 - Extreme Heat.
 - Seismic,
 - Flood

- Normal Threat
 - Physical Accident
- Malevolent Threat
 - Physical attack,
 - Cyber Attack

Subtask A. Maps of Areas with Predominant Threats (Climate-Related Risk to Initial Vulnerability Assessment Survey)

Map 5 - Sites that Indicated Effects from Wildfire

Map 7 - Sites that Indicated Effects from Multiple Vulnerability Areas (Flooding, Extreme Temperatures, Wind, Drought, Wildfire)

Subtask B. Case Studies

"Ford Plant" are development, Minneapolis, MN The University of Texas Austin

City of Gram, Denmark

West Point USMA, NY

City of Graz, Austria

Subtask C. Database of Thermal and Power Technologies

Electric Chiller

Diesel Generator

Photovoltaic

AC Bus

Fuel Cell

Absorption Chiller

Wind Turbine

Gas Boiler

Organic Rankine Cycle

Electric Heater

Thermal Storage

Power Storage

Subtask C. Example of energy supply system in a military garrison with mission-critical facilities including redundant heat and/or electricity supply (marked in red).

Subtask E: German Building Community Simulation Model

Subtask E: US Army NZP-tool: Selection of Facilities to be Included in the Study

Subtask E. MIT Lincoln Laboratories Energy Resilience Analysis Tool

Subtask E. Workflow for the Annex 73 EMP and Resiliency analysis

Subtask F. Business, Legal and Financial Aspects- Missions and Goals

Financing of demanding NZE

By considering enhanced LCC

based cash flows

- Overall: Generating reliable implementation models which allow to yield more ambitious energy efficiency standards for NZE Quartiers
- 1: Evaluation of implementation models for NearZE Quartiers
- 2: Evaluation of Life Cycle Cost and Benefits of NZE Quartiers
- 3: Practical implementation of results

Subtask F. Business, Legal and Financial Aspects- Mission and Goals

• 4 technical- organizational structure for implementation models based on the results of A 61 which allows the cash flow based interaction between consumers, storage, production and grids

Subtask F. : Businsess, Legal and Financial Aspects- Mission and Goals

• 5 Risik analysis, quality assurance- exemplary calculation of default risk values for NZE project facilitation based on a five stage work flow

Subtask F. How to approach LCCA of energy system with requirements to resiliency

Information Flow for Subtasks A-F

25

Expected Deliverables

- A "Guide for Energy Master Planning in public building communities"
- Enhancements for Energy Master Planning Tools
- A Book of Case Studies and Pilot Projects (Examples of Energy Master Plans)

Participating Countries and Organizations

		Subtask	Subtask	Letter of Nat.			Subtask	Subtask	Letter of Nat.
Country	Contracting Party	Participant	Co-lead	Participation	Country	Contracting Party	Participant	Co-lead	Participation
Australia	University of Melbourne	A,B,C, D. E, F		X	Norway	Norwegian Defence Estate Agency	A, B, D, F		
	MOD					SINTEF			
Austria	AEE INTEC		F	Х	U.K.	UK MOD	А, В		X
	B.I.G.					US. Army Engineer Research and	A, B, C, D, E,	OA, B, D	
	(Bundesimmobiliengesellschaft)					Development Center	F		
Canada	Carleton University		Α	Х		USACE HQ/MP	D		
	DND???					GSA	В		
Denmark	Aalborg Technical University,	А, В				Oak Ridge National Laboratory		A	
	Ramboll	,	С			Sandia National Laboratory	C, D	A	x
	Danish MOD	А, В	-		U.S.A.	National Renewable Energy	А, В		· ·
	KEA/Steinbeis Transfer Centre	A,B	OA, F			Laboratory			
	GEF Engineering,	C, E	C			U.S. DOE BTO	A,B		-
	Stuttgart University of Applied	B, C,	E			International District Energy	В, С		
Germany	Sciences,	, -,				Association			-
	Enisyst		F			Carnegie Mellon University	A, B, C		-
(-ermany)	German Armed Forces Estate	A,B				Big Ladder Software Company	A,C	E	
	and Infrastructure Agency	,							
	German ESCO association	F							
	BPIE		F						
	Susi Funds, Solas Capital Funds	F							

Operating Agents and Subtasks Co-Leads

Operating Agents	Alexander Zhivov (ERDC, USA) and Rüdiger Lohse (KEA, Germany)
Subtask A:	Scott Bucking (Carleton University, Canada) and Robert Jeffers
	(Sandia National Lab, USA)
Subtask B:	Ingo Leusbrock (AEE, Austria), Michael Case, (ERDC, USA)
Subtask C:	Anders Dyrelund (Ramboll, Denmark) and Domenik Hering (GEF,
	Germany)
Subtask D:	Reinhardt Jank (Germany) and Alexander Zhivov (ERDC, USA)
Subtask E:	Peter Ellis (Big Ladder, USA) and Ursula Eckert (HFT-Stuttgart,
	Germany)
Subtask F:	Rüdiger Lohse, Oliver Rapf, (Building Performance Institute,
	Germany)

Time Schedule

- Preparation phase one year (through November 2017)
- Working phase 3 years (starting February 1, 2018)
- Reporting phase 1 year

Thank you. Questions??

ST F 1. Template Framework

- Collection of existing legislation of direct relevance for NZE neighborhoods in the spatial planning process:
 - Who provides or denies allowances, obligations by regional agencies for determined areas
 - Which legislative (directly impacting) structures need to be considered when a NZE quartier is faciltated → cooperation with ST B
 - Set of major standards for the design of NZE (BREAM, CIBSE, ASHRAE)
 - Approximative number of NZE neighborhoods initiated in your country

ST F Evaluation of implementation models

- 1: Evaluation of implementation models for NZE Quartiers (Oct. 18- March 19)
 - Description of 1-2 business as usual implementation models in each of the participating countries
 - Acting parties, value generation, monetary flows, contractual structure for the major activities following the structure of a business model template

ST F Evaluation of LCC

- 2: Evaluation of Life Cycle Cost and Benefits of NZE Quartiers
 - Template of energetic and non energetic benefits resulting from NZE implementation
 - Description of different LCC and their calculation:
 - Energy: consumption reduction, peak shaving, hourly demand response...
 - Measurement & Refurbishment: avoided maintenance cost building, HVAC
 - Additional LCC: avialble floorspace, comfort, other functional
 - Additional tools: least cost planning approach (decriptive)
 - Impact on the cost- benefit case: calculation of 2 cash- flows (BUA- Advanced LCC) and evaluation of the impact
 - Summary and calculation table

ST F Risk evaluation

- 3: Risk evaluation from the perspective of financiers:
 - Evaluation of major activities in 5 acting phases of a NZE development: (baselinebuilding, decision making, planning/design, implementation, operation and M&V)
 - Feed- back process with financiers, ESCos, project facilitators
 - Evaluation of major risks in these 5 acting phases: organizational, design related, technical)
 - De- Risking measures for the major risks (descriptive guideance)

ST F Evaluation of implementation phase

- 4: Practical implementation of results:
 - Description of the experience in the practical implementation of the LCC and framework analysis at the hand of the pilot case study
 - Comparison of BUA and advanced NZE calculation in the decision making process
 - Additional applied strategies for cost reduction such as LCC
 - Short resumee, lessons learnt → ST B, C

ST A

WP A	Outcomes	Activities / Milestones	Time line
A1	Definition of target values on building (and quartier level?)	 Collection of existing standards Summary of methodologies used Conclusion of methods to be used for buildings (and neighborhoods) 	Juli 2018
	Representative EUIs	 Selection of representative building types/ neighborhoodtypes Collection of EUI values (buildings /neighborhoods) 	Oktober 18
	Building energy archetype models	 Definition of paramenters for the models Definition of calculation methods Calculation ? 	Dec 18