

TASK C – SUPPLY CATALOGUE IEA ANNEX 73 RAMBOLL ENERGY ANDERS DYRELUND

STATUS

- Template in excel, draft with a few cases
- Danish team agreed on principles
- Template July 16, with some technologies from Ramboll
- Template September 12, with more technologies and energy prices from Ramboll
- Alexander, proposed some technologies and input-sheet to the model
- Contribution from Austria on PVT
- Contribution from Germany on symbols
- New version October 2

RAMBOLL

HOW DETAILED INFORMATION IN TASK C ?

- Generate input to our screening model
- Not as detailed as a text book for universities, links can do it.
- But sufficient information to give the energy planner sufficient understanding of
 - Technical information of the technology
 - Economical information of the technology
 - Technical and economical performance of the technology in interaction with others technologies
 - A first understanding of simple solutions, which the screening model shall be able to propose
- Technologies should if possible have link to real cases in task B, which prove that the technology is applicable and cost effective in certain conditions
- Or, at least the technologies could refer to data from other supply catalogues, e.g. the Danish Energy Agency

https://ens.dk/en/our-services/projections-and-models/technology-data

STRUCTURE OF THE TEMPLATE IN THE CATALOQUE

- Sheets in the model:
 - Introduction-sheet: content, unites, calorific values, energy prices, cost of CO2 etc.
 - Energy system-sheet: system combination of technologies
 - Chart including symbols for description of the energy system
 - Technology-sheets, one sheet for each type of technology
 - Storages
 - Boiler plants
 - CHP plants
 - Heat pumps and chillers
 - DH networks
 -
 - Non energy..
 - Input-sheet to the model technology data to be transferred to this sheet

THE SHEETS IN THE MODEL, FROM INTRODUCTION TO INPUT

IEA Annex 73	Introduction					
TASK C Equpiment						
Introduction	Every headline of technology categories in the list of content below refers to a sheet in this file.					
List of content	Every sheet is divided in sections of 100 rows	in two pages - one section for eac	h technology in the same category			
Introduction	Heat Pumps and Chillers	HVAC	Energy-Systems			
List of content	Electric Chiller for cooling	Building heat exchanger stations	Combined Heat and Power in Arctic Climate			
Introduction and guideli	e Electric heat pump for combined	Central heating	District cooling in tropic climate			
Units and prices	Absorption Heat Pump for coolin		Combined heating and cooling in mild climate			
	Air condition chiller	Combined ventilation and DH&C	District heating and wind in mild climate			
Energy Storages	Available 1	Hot tap water system	DH, solar and wind in mild climate island			
Hot water tanks, pres	sureless Available 2	Available 1	Available 1			
Hot water storage tan		Available 2				
Hot water storage pit	DH-Networks					
Cold water storage tar	k Capacities and losses	Other Energy	For inspiration and guidance:			
Cold water storage pit		Heat exchanger stations	The sheets "Input" and "Storage" in the			
Gas storage cavern	Preinsulated pipes	Pressure sectioning	end of the file include information to be			
Aquifer gas storage	Pipes in concrete ducts	Pressure reduction	transferred into the model.			
Hydro pump storage	Available 1	Scada systems	Therefore each technology shall			
uction Energy Syste		CHP Plants Heat Pumps and Ch	illers DH-Networks DC-Networks Ga	as-N 🕂		

Index	Name	Туре	<u>Size</u>	(Units)	Capacity/O utput
3	Solar PV 10 kW system	Solar PV			100000
4	Solar PV 100 kW system	Solar PV			100000
5	Solar PV 1000 kW system	Solar PV			100000
7	Central plant boiler	Boiler			100
8	Central plant boiler	Boiler			1000
9	Central plant boiler	Boiler			2500
10	Central plant boiler	Boiler			10000
11	Reciprocating engine (natural gas)	Recip. Engine			300
12	Reciprocating engine (natural gas)	Recip. engine			1000
13	Reciprocating engine (natural gas)	Recip. engine			3000
14	Reciprocating engine (natural gas)	Recip. engine			5000
15	Reciprocating engine w/ heat recovery (natural gas)	Recip. engine cogen			100
16	Reciprocating engine w/ heat recovery (natural gas)	Recip. engine cogen			500
17	Reciprocating engine w/ heat recovery (natural gas)	Recip. engine cogen			1000
10	Designmenting angine w/ heat recovery (natural ges)	Desin angine segan		T	2000
etworks	DC-Networks Gas-Networks Power-Networks	HVAC Renewable Energy	Resilience	Other Energy	Input No

THE STRUCTURE OF THE TECHNOLOGY SHEETS

- Line 1-100, 2 pages: List of content, text box, figures, summary calculations etc
- Line 101-200, 2 pages: Technology type 1, text box, figures, cost calculations etc
- Line 201-300, 2 pages: Technology type 2, text box, figures, cost calculations etc
- Line 301-400, 2 pages: Technology type 3,
- Etc.
- In case of many types, it could be divided into two technology types

	IEA Annex 73 TASK C Equpiment			Energy Storages 01-10-2018						
1	Summary of Energy storag	ges								
2										
3	List of content									
4	Hot water tanks, pressureless	Ramboll		The biggest challenge in developing Net Zero Communities is not to generate renewable energy, but						
5	Hot water storage tank, pres.	Ramboll		to use it.						
6	Hot water storage pit	Ramboll								
7	Cold water storage tank	Ramboll		The available renewable energy or surplus energy sources, which can contribute to forming Net Zero						
8	Cold water storage pit	Cold water storage pit Ramboll		Communities, are normally not available when needed, and it can even be more expensive to store						
9	Gas storage cavern	Ramboll		the energy than to generate it. A good example is that the renewable energy sources wind, solar and hydro can generate electricity, as the wind blows, the sun chines and the rain falls, whereas the						
10	Aquifer gas storage	Ramboll		power grid it selv can not store the electricity.						
11	Hydro pump storage	?		power grid it serv can not store the electricity.						
12	Electric batteries	lectric batteries ? Therefore energy storages will play an important role.		Therefore energy storages will play an important role.						
13	Aquifer Thermal Energy Storage	Aquifer Thermal Energy Storage Ramboll								
14	Available 1	2		In order to identify the most cost effective storage it is necessary to look both at the production , the						
•	Introduction Energy Systems Energy Storages Boiler Plants CHP Plants Heat Pumps and Chillers DH-Networks DC-Networks Gas-N +									

		IEA Annex 73 Energy Storages TASK C Equpiment	01-10-2018			
	101	Hot water tanks, pressureless				
	102 103 104 105 106 107 108 109 110 111	Hot water pressure less tanks is the most common energy storage. This is because hot water is the end-use for most heating systems and for hot tap water and because water is a very natural and environmental friendly storage media. The tanks are normally constructed in steel, but it could also be in concrete, fiberglass reinforced plastic. Steel tanks for storage of hot water is a well-established technology, both in small houses and for large DH systems. Typically, a tank used in district heating is insulated with about 2x150 mm insulation(mineral wool).	Heat consumers			
	112 In the last decades steel tanks have been used as short term storage in combination with					
	113	combined heat and power plants, to be able to offset production to a more favorable time. For	Return water			
RAMBOLL	114 115 116	extraction CHP plants (which can generate power only) the storage allows the plant to stop heat generation and generate maximal power only when electricity is most expensive. For back pressure CHP plants or engines (fixed ratio between heat and power), it allows the plant to a simple way. The tank compensate				
	•	Introduction Energy Systems Energy Storages Boiler Plants CHP Plants Heat Pumps and Chillers DH-Networks DC-Netw	orks 🛛 Gas-N 🕂 🗄			

PLAN FOR COMPLETION

- All contributions to be send to Ramboll, urgent
- Ramboll will start to complete missing information
- Danish Technology catalogue will be used in case no better data is available
- New draft February 2019
 - Data for all technologies listed in draft 2nd of October
 - 6-8 energy systems analysed with EnergyPro and prices
 - Example on transfer of data to input-sheet
- More contribution welcome
- New updated edition before each working group meeting

