District Energy – the resilient energy infrastructure

Dr. Oddgeir Gudmundsson
Danfoss A/S

Anders Dyrelund
Ramboll A/S
District heating is a continuously evolving infrastructure

- Through the evolution of district heating various resilience favorable factors have been built in
 - Multiple heat sources
 - Fuel flexibility
 - Meshed distribution layouts
 - Simple design and operation
 - Local and closed solution
 - Pressurized water
 - Low temperature levels
System design and operation
- Play to the strengths

• District heating systems are local solutions
 • Covering from relatively small campuses to large cities

• Fulfilling building heating demands does not need high quality energy
 • It is the energy that no one cares about

Copenhagen district heating systems.
Source: [2]

Campus Lichtwiese at Technical University of Darmstadt.
Source: [1]

Over 3800 district heating systems in Europe.
Source [3]
System design and operation
- Play to the strengths

- Urban areas tend to have abundances of low-quality energy
 - Waste heat from power generation, industrial and commercial processes
 - Geothermal, solar, water reservoirs
 - Depending on the location various renewable thermal sources may be available, solar heat, water reservoirs, ambient heat and etc.

- Storing low temperature heat is simple and efficient
 - The larger the thermal storage the more efficient it is
 - It can have multiple roles:
 - Energy storage, peak load units, emergency supply units or to decouple the heat demand and heat generation

 Thermal storage at a CHP plant.
 Source: Ramboll A/S

Main heat sources for Copenhagen district heating systems.
Source [2]
System design and operation
- Play to the strengths

- **Water born systems**

 - Water is abundantly available and is not an explosive medium

 - Water based systems have high inertia, a heat plant failure is not immediately, if at all, felt by the customer

 - Pipelines water leakages normally occur gradually and can be detected well in advance of total failure

 - Due to high level of robustness of the system maintenance can be scheduled for periods of minimal impact to heat consumers and city residence

Installation of a pipe in central Copenhagen.
Source: Danish Board of District Heating
System design and operation
- Play to the strengths

- **Heat planning is a necessity**

 - **Thermal users**
 - Where are the critical users located?
 - Hospital, command centrals, mission critical installations
 - What are their requirements?
 - For how long can they be without supply?
 - Is there a redundancy requirement?
 - What temperature level do they need to maintain full operation?

 - **Thermal sources**
 - Are there thermal sources available in the vicinity of the demand area?
 - What fuels are available?
 - Gas grid, power grid, ...
 - Are there any limitations on the location of peak/emergency plants?
 - Pipeline constraints
 - Crossing bridges, big roads, rail roads, airfields can be a major operation

Clay Kaserne, Wiesbaden.
Source: Google
System design and operation
- Play to the strengths

• For mapping possible heat sources we need to consider the local area.

• Clay Kaserne happens to be closely located to Wiesbaden and Frankfurt:
 • Both have well established district heating systems.
 • Multiple existing heat plants operating with wide array of fuels.

• Taking advantage of the nearby district heating systems and supplementing it with local peak/reserve boilers would lead to a very reliable thermal infrastructure.
Thermal sources
Multi thermal source systems
- The enabler of thermal resilience

- **Base load source**: distributed around the supply network

- **Peak load boilers**
 - Strategically located considering
 - Pipeline capacity limitations
 - Geographical complications
 - Critical consumers

- **Portable emergency/reserve boilers**

- **Thermal storages**
 - Theoretically thermal storages can be located anywhere
 - Practically they tend to be located at the heat sources
 - To decouple the thermal storage capacity from the system supply temperature

- **Emergency power generators**
 - For operating the distribution pumps in case of grid failures
Multi thermal source systems
- The enabler of thermal resilience

• **Base load source:** distributed around the supply network

• **Peak load boilers**
 • Strategically located considering
 • Pipeline capacity limitations
 • Geographical complications
 • Critical consumers

• **Portable emergency/reserve boilers**

• **Thermal storages**
 • Theoretically thermal storages can be located anywhere
 • Practically they tend to be located at the heat sources
 • To decouple the thermal storage capacity from the system supply temperature

• **Emergency power generators**
 • For operating the distribution pumps in case of grid failures
Multi thermal source systems
- Measures to take in case of disruptions?

- Disruptions at the thermal sources can in principle be due to various reasons
 - Malfunctioning plant
 - Redistribute the load to other plants in the system
 - Fuel shortage
 - Change fuels in multi fuel capable boilers
 - Operate a different thermal plant
 - Human related aspects (strikes, infections, sabotage and etc.)
 - Redistribute the load to other plants in the system
 - Climate related (storms, floods, earthquakes and etc.)
 - Redistribute the load to other plants in the system
 - Cascading plant failures
 - Unlike power systems district energy systems do not experience cascading plant failures
Distribution network
Distribution network
- Pipelines

- Depending on the conditions the distribution pipeline can be:
 - Direct buried
 - Placed in ducts or tunnels
 - Above ground

- Underground infrastructure reduces the risk of:
 - Damage from natural causes (storms, floods, severe colds, fires, falling trees, earthquakes, animals and etc.)
 - Human causes like vehicle collisions and intentional damage

Pipeline in Thule, Greenland.
Source: Ramboll A/S

Direct buried pipe installation.

Utility tunnel.
Source: Uponor

Source: Danfoss A/S
Distribution network
- Resilient designs

- There are number of factors that improve the resilience of the distribution network

1. Damage resistant design and installation of the pipe network
 - Assemble long pipe stretches above ground and simultaneously lower the pipeline to the trenches
 - Design for eventual stress due to elongation once in operation
 - Bends, compensators and preheating prior to backfilling trenches
 - Use pipe material that can handle both temperature and pressure of the system
 - Apply strict water quality procedures

- **Do what the pipe manufacturer recommends!**
Distribution network
- Resilient designs

- There are number of factors that improve the resilience of the distribution network

2. Meshed pipe network layout, multi source and pump strategy
Distribution network
- Resilient designs

- There are number of factors that improve the resilience of the distribution network

3. Utilization of fault detection equipment and preventive maintenance

- Early detection of imminent failures will help keep the system robust, reliable and reduce chances of cascading failures in case of disruptions

- Pipeline leakage detection wires
Distribution network
- Resilient designs

• There are number of factors that improve the resilience of the distribution network

3. Utilization of fault detection equipment and preventive maintenance

• Early detection of imminent failures will help keep the system robust, reliable and reduce chances of cascading failures in case of disruptions

• Pipeline leakage detection wires

• Thermographic imaging of the pipeline from air – [4]

a) Thermographic imaging of a leak and b) same place during daytime. Source: Termisk Systemteknik

c) and b) Thermographic imaging of a leakages
Source: Termisk Systemteknik
Distribution network
- Resilient designs

- There are number of factors that improve the resilience of the distribution network

3. Utilization of fault detection equipment and preventive maintenance

- Early detection of imminent failures will help keep the system robust, reliable and reduce chances of cascading failures in case of disruptions

 - Pipeline leakage detection wires
 - Thermographic imaging of the pipeline from air
 - Source: [4]
 - Application of digital clones or big data can further help to find potential faults

Source: Danfoss A/S

Source: Kamstrup A/S
Distribution network
- Resilient designs

- There are number of factors that improve the resilience of the distribution network

4. Strategic location of shut off valves
Pipeline failures
- Experience from Kaunas, Lithuania, and Warsaw, Poland

- **Pipeline repairs**

 - **Warsaw district heating, Poland largest network [5]**
 - System from the 1950’s, at periods insufficiently maintained
 - Corrosion accounted for 88% of failures, piercing of pipe 1% and other reasons 11%
 - Only 5% of failures occurred in modern pre-insulated pipes, which have been applied since modernization started in 1992
 - Pre-insulated pipes account for 41% of the installed pipes (691 km)
 - 64% of failures occurred in service pipes

 - **Kaunas, Lithuania [6]**
 - System from the 1960’s, at periods insufficiently maintained
 - 72% of repairs are made within 8 hours
 - 2% of repairs take more than 24 hours

- **Note:** Water pipes do not explode, usually they start to leak gradually
 - Gradual leakage does not prevent heat delivery

The figure shows time to repair pipeline. Source: [5]
Pipeline failures
- Measures to take in case of disruptions?

- Isolate the impact of the failure by closing shut-off valves around the failure

- **Inside the impacted area**
 - Ensure optimized building operation (minimize heat losses by strict operating procedures of doors and windows)
 - Connect portable building boilers to the building heat interface unit
 - **Repair pipeline**

- **Outside the impacted area:**
 - Start peak/reserve boilers if available / portable boiler
 - In case of insufficient emergency capacity
 - Limit the heat draw off by buildings
 - Reduce capacity allowance and reduced internal building system supply temperature
 - Prioritize buildings in case of extended supply shortage

Diagram:
- Base load plant
- Loop
- Building measures
- Critical point 2
- Elevated area
- Slave pump
- Booster pump
- Shut-off valve
Buildings: Thermal consumers
Buildings
- The make it or break it parameter

- Buildings and the end users need to play their part
 - The more energy efficient the more relaxed is the energy system

- Energy efficiency in this context is the ability of the building to:
 - Retain the status quo
 - Minimal heat loss and gains to/from ambient
 - Efficiently utilize the thermal supply
 - Maximum temperature difference between supply and return

- The benefits of increased energy efficiency are
 - Increased time constant of the thermal mass
 - Minimal primary energy demand
 - Reduced peak energy demand
Buildings
- Heat transfer units

• Building heat interface is simple and robust

• It is factory assembled and tested

• Can be designed for portable emergency boiler connections

• Can be replaced partly or fully in matter of hours

• Low pressure hot water → Simple to operate
Heat interface disruptions
- Measures to take in case of disruptions?

• Disruptions of the heat interface units can be:
 • Component malfunctioning
 • Loss of power

• In case of malfunctioning components, f.ex. valves it is normally possible to operate them manually to guarantee stable heat supply
 • If stuck in close position replacement is simple, fast and easy indoor work

• Depending on the heat interface unit, direct or indirect, a loss of power will lead to failure of electronic equipment, actuators, pumps and electronic controllers
 • In these cases the critical components are the pumps
 • Until power is restored the building heat supply is limited to the natural circulation within the building
 • Depending on the building installation natural circulation has been shown to account for 40%-80% of the heat supply prior to pumps being stopped
Building heat transfer units
- Digital solutions

- SCADA systems can provide remote monitoring and control of heat interface units
 - Ability to prioritize buildings

- Artificial intelligent can be applied to:
 - Estimate the building thermal mass
 - Predict the time until building reaches a critical condition
 - Optimize the building heating installation

Leanheat AI learns on the building thermal mass
- Optimizes the supply temperature
- Reduces peak demands
- Gives knowledge on building thermal constant
Case examples
Case: Sønderborg, Southern Denmark

- Population: ~28,000 persons
- Households: ~10,000
- District heating coverage: ~99%

Main heat sources:
- Base load: Waste incineration
- Mid load: Biomass heat plant, geothermal plant and absorption heat pumps
- Peak load: Biooil / gas boilers

Portable emergency boiler

Critical building, Hospital, has its own emergency boiler
- Which also serves as a reserve boiler for the district heating network
Case: Sønderborg, Southern Denmark

- Population: ~38,000 persons
- Households: ~10,000
- District heating coverage: ~99%

- **Distribution system** has meshed distribution design

![Map of Sønderborg showing base load heat sources, peak/backup heat sources, thermal storage, and pump station.](image-url)
Conclusions

• District heating and cooling systems have a proven reliance track record

• The key points when realizing a resilient district energy systems are:

 • Adhere to the requirements from the component manufacturers
 • Installation techniques, water quality, ...

 • Apply multiple heat sources, strategically located around the system and supplement them with heat storages

 • Design meshed systems, multiple delivery routes

 • Apply pipe leakage detection vires and fault detection software’s and perform periodic visual and operational inspection of components

 • Energy efficient buildings add to supply flexibility, reduce peak demand, increase the critical time to act

 • **Schedule maintenance at times that have minimum impact on heat consumers**
Thank you for your attention

Contact information:
Dr. Oddgeir Gudmundsson
Director, Projects
og@danfoss.com
www.linkedin.com/in/oddgeirgudmundsson
References

