The Time is Now: Planning for Energy and Water Resilience

October 16, 2020
INTRODUCTIONS

U.S. Army Engineer Research and Development Center (ERDC) - Applied Research Planning Support Center (ARPSC)

Rumanda Young, PhD, RLA, AICP, LEED AP
Associate Technical Director, ERDC-EL
Office of the Technical Directors

Contact Information:
Rumanda.K.Young@usace.army.mil, 817.507.9167
What is Different about IEWPs?
Overcoming Challenges
What to Expect from an IEWP
Example Projects and BMPs
How to Use and Maintain it
What’s Different in an IEWP?
IEWPs Drive a Shift in Thinking

- Shift in thinking toward Resilience and Mission Assurance
 - Energy efficiency (pay-back and savings-to-investment ratio) projects remain but primarily focused on resiliency projects driving ISR-MC improvement

- Water is as important as Energy (if not more)
 - Energy-Water nexus to survivability

- Often Involves Privatized Systems
 - Although a system is privatized it’s still essential to many ISR-MC criteria
 - DPWs may have lost personnel and knowledge; need to maintain strong relationships
Army IEWP Guidance – The Plan Process

1. Identify Requirements
 - Establish baseline
 - Establish E&W needs for critical missions
 - Define IEWP stakeholders, scope and goals
 - Review installation performance metrics

2. Identify Threats and Opportunities
 - Assess vulnerabilities and mission impact

3. Assess Risk and Opportunities
 - Evaluate conservation and efficiency opportunities

4. Develop Solutions
 - Generate solutions
 - Develop project concepts
 - Prioritize solutions

5. Execute and Evaluate
 - Plan implementation
 - Define implementation and funding approach
 - Document IEWP
 - Report installation performance (metrics/goals)
 - Refine and update IEWP
The Plan Process – Identify Requirements

Goals and Scoping
- Identify stakeholders
- Review existing plans
- **Identify critical missions/facilities**
- Establish resilience planning goals

Baselining
- Collect baseline condition and resource use
- Understand current ISR-MC
- Validate facilities and infrastructure supporting critical missions
- Determine energy and water needs
The Plan Process – Risks and Opportunities

Assess Risk
- Identify hazards & threats and relative probabilities
- Identify E&W system vulnerabilities associated with hazards & threats
- Establish impact from E&W disruption
- Establish overall risk

Identify Opportunities
- Climate conditions
- Energy and water infrastructure
- Past practices and experiences (lessons learned)
- Energy and water efficiency / retrofits
- Operational practices
- Institutional policies, plans, or procedures
Possible resiliency solutions

- Efficiency Strategies
- Assured Access Projects
- Infrastructure Condition Projects
- Critical Mission Sustainment Projects
- Supply Strategies
IEWP Planning Tools
IEWP Results in a Prioritized Project Implementation Plan

<table>
<thead>
<tr>
<th>Project #</th>
<th>Project Name/Description</th>
<th>Key Area Addressed</th>
<th>ROI</th>
<th>Funding Body</th>
<th>Project Champion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Backup generator for 2331</td>
<td>Critical Missions</td>
<td>NA</td>
<td>ERCIP</td>
<td>Jack Sheppard</td>
</tr>
<tr>
<td>2</td>
<td>Connect central power plant to 1643, 1644 and 1900</td>
<td>Critical Missions</td>
<td>1.1</td>
<td>TBD</td>
<td>Eleanor Shellstrop</td>
</tr>
<tr>
<td>3</td>
<td>Upgrade substation D capacity</td>
<td>Assured Access</td>
<td>NA</td>
<td>*Contract with utility</td>
<td>Walter White</td>
</tr>
<tr>
<td>4</td>
<td>Add cogeneration engine to central energy plant (1427)</td>
<td>Energy usage and cost</td>
<td>2.4</td>
<td>UESC</td>
<td>Gob Bluth</td>
</tr>
</tbody>
</table>

Example Energy Projects

- Propane injection plant for natural gas back-up; peak shaving
- Add on-installation power generation (RICE, PV, Trailer-mounted Generators, Batteries)
- Microgrid
- Metering & smart building controls upgrades
 - Interconnecting substations; hardening of substations
 - Add diesel storage
 - Bury critical electrical lines
LPG-air systems provide supply security under extreme circumstances, ensuring gas-energy keeps flowing to serve critical needs. Like an electrical back-up generator, these systems are used to fully replace natural gas supply should supply be curtailed due to planned or unplanned events.

Many natural gas suppliers offer lower-cost supply when the purchaser agrees to curtail gas use upon request, LPG-air technology allows natural gas purchasers to reduce the delivered cost of natural gas while ensuring clean-burning gas energy is always available.

This technology supports the ISR-MC category of Assured Access to resource supply (specifically natural gas) and can also support Critical Mission Sustainment.
Example Water Projects

- Water resiliency for key facilities, ex: dorms and kennels
- Add water wells or add redundant water system inter-connections
- Expand reclaimed water system
- Reduce/eliminate water losses
- **Dry hydrants**
- Meter and bill for water costs
A dry hydrant consists of an arrangement of piping with one end in the water and the other end extending to dry land and available for connection to a pumper.

Dry hydrants have the following features:

- A non-pressurized pipe system.
- Use relatively inexpensive piping material and other supplies.
- Are permanently installed in existing lakes, ponds, streams and cisterns.
- Provide a means of access whenever needed, regardless of weather.
- Allow years of simple operation with a minimum of maintenance.
- The time savings are many.
EXAMPLES: BEST MANAGEMENT PRACTICES (BMPs)

- Generator Management Plan
- Readiness Improvements
 - Exercise utility outage scenarios
 - Generator
- Data-driven Energy Conservation
- **Design New Critical Facilities for Passive Survivability**
- Expand Water Rights
- Create Water Shortage Plans
- Infrastructure Cybersecurity Task Force
- Codifying processes; documenting institutional knowledge
PASSIVE SURVIVABILITY

PASSIVE SURVIVABILITY refers to building’s ability to maintain critical life-support functions and conditions for its occupants during extended periods of absence of power, heating fuel, and/or water.
IEWPs Provide a Variety of Benefits

- A shift in thinking toward resilience and mission assurance
- Installation-specific energy and water visions and goals
- Risk assessments based on current and future climate conditions
- Freshly vetted critical facilities lists
- Capabilities assessments and gap analyses
- Lists of new projects and best management practices for installations to pursue and implement
LESSONS LEARNED: USE AND MAINTAIN THE IEWP

- The G9 sharepoint site has all the reports and template (government only)
- G9 is reviewing Army’s IEWP against standardized metrics
- Each installation has been very different; installations typically don’t know ahead the scope and the information we’re asking for
 - This is not another energy efficiency study
 - Need to target critical missions – what they are is scenario dependent
 - Tie IEWP projects to the ISR; improving the ISR is tied to Army funding the projects
 - Simulate ISR where it is not reported provides insights to energy posture

$X in projects will improve your ISR score to XX
OVERCOMING CHALLENGES DURING PLAN PREPARATION

- Data collection
- Critical facility list
- Setting goals – ISR-MC, existing policy and installation specific
- ISR-MC data and simulations
- COVID travel restrictions
- MCDA, plan evaluation and project prioritization
Additional Training Resources

- Army Energy and Water Resilience (EWR) Assessment Guide training,
 - Assessment Guide 101 – Session 1 (Friday October 16 – 0900 EDT/1300 UTC)
 - Assessment Guide 101 – Session 2 (Thursday October 22 – 1400 EDT/1800 UTC)
 - Assessment Guide 101 – Session 3 (Tuesday October 27 – 1900 ET/2300 UTC)

- Prospect Courses designed around IEWP requirements
 - Prospect Course #258, Master Planning Energy and Sustainability
 - Session16-19 March 2021