

IEA EBC Annex 72: Assessing life cycle related environmental impacts caused by buildings

Environmental benchmarks for buildings

Freja Nygaard Rasmussen, Aalborg University, Denmark Maria Balouktsi, Karlsruhe Institute of Technology, Germany

Subtask 1 Leader: Thomas Lützkendorf, Karlsruhe Institute of Technology, Germany Subtask 3 Leader: Harpa Birgisdottir, Aalborg University, Denmark

Final event: SBE '22, Berlin, Germany, 21 September 2022

Context

The position of ST1 and ST3 "Benchmarks" and the interrelations to other ST's and results

Benchmarks and limit values

Target groups for application, needs and recent developments

- Target setting in client's brief
- Orientation in design process
- Funding programmes
- Legal requirements

System of benchmarks and target values

Definitions and job sharing

- Limit value: the upper or lower acceptable performance level on a performance scale
- Reference value: performance level that represents state of the art or best practice. A reference value is subject to temporal changes
- Target value: performance level that represents an objective that goes beyond the reference value. Target values can follow a top-down or bottom-up approach. A subdivision into short-term, medium-term and longterm target values is recommended.

Existing Benchmarks (kg CO₂e/m²_{*}y)

based on a survey for residential buildings: (a) whole life carbon (b) embodied carbon

Technology Collaboration Programme

Granularity Sub-division of benchmarks

- Benchmark values typically for use in regulation or certification
- Orientation/guide values typically for use in the building design process

Method-related typologies

The "net zero" benchmark

A special type of target

Bottom-up vs top-down target values

Need to integrate science-based target to be in line with 1.5 °C pathway?

ANNEX 72 EBC

Typology of bechmarks

Checklist for interpretation (selected aspects only)

- Indicator / impact category
- Object of assessment / functional equivalent
- Included building components based on a building model
- Included life cycle stages based on a life cycle model
- Reference study period
- Bottom up versus to down approach
- Static versus dynamic approach
- Source of data, appropriateness in relation to time and region

Absolute versus net zero

Options to define and achieve (net) zero GHG emission buildings

		Net Zero emissio	on approaches			Zero emission a.
Net balance (Aa)	Net balance (Ab)	Technical reduction (Ba)	Technical reduction (Bb)	Technical removal (Ca)	Technical removal (Cb)	Absolute Zero
potentially avoided emissions	allocation	indirect	direct	potentially reversible	stable	
Accounting for the potential benefits caused by exported energy produced on-site	Attributes the pro rata share of GHG emissions caused by on-site energy production to the exported energy	Investment in projects, which lead to potential CO ₂ / GHG emission reductions elsewhere such as investments in solar or wind power plants*	Investment in CO ₂ /GHG emission reduction projects such as CCS equipment in coal power plants*	Investment in projects, which remove CO_2 from the atmosphere, but with potential reversibility, such as biological fixation*	Investment in projects, which remove CO ₂ from the atmosphere, such as BECCS or DACCS*	Use of construction materials/operatio nal energy with zero GHG emissions (including supply chain emissions)

*contribution to initial financing and implement., or purchase of corresponding emission certificates

Level of ambition

(net-)zero GHG emission buildings

Scope and system boundary

LIFE CYCLE SCOPE													PROPOSED TERM TO	
A1-3	A4-5	B1	B2-3	B4	B5	B6.1	B6.2	B6.3	B7	B 8	B8 C1-2 C3-4		REFLECT EACH BROAD SCOPE	
					•							•	(Net) zero Scope 1 regulated operational GHG emission	
													Alternatively: (net) zero B6.1 (scope 1) GHG emission	
						+	+						(Net) zero Scope 1-2 regulated operational GHG emission	
													Alternatively: (net) zero B6.1 (scope 1-2) GHG emission	
						*	*						(Net) zero Scope 1-3 regulated operational GHG emission	
													Alternatively: (net) zero B6.1 (scope 1-3) GHG emission incl. supply chains	
													(Net) zero Scope 1 complete ¹ operational GHG emission	
													Alternatively: (net) zero B6.1-3 (scope 1) GHG emission	
	• •				•	+	+	+	+	+			(Net) zero Scope 1-2 complete operational GHG emission	
													Alternatively: (net) zero B6.1-3 (Scope 1-2) GHG emission incl. supply chains	
						*		*	*	*			Net) zero Scope 1-3 complete operational GHG emission	
													Alternatively: (net) zero B6.1-3 (Scope 1-3) GHG emission incl. supply chains	
			•								•		(Net) zero upfront embodied GHG emission (Scope 3)	
													(Net) zero complete embodied GHG emission (Scope 3)	
													(Net) zero life cycle-based GHG emission (Scope 1-3)	Julife cycle

Supplementation of benchmarks by recommendations on how they can be achieved

Recommended route to (net) zero **GHG** emission buildings

Supplementation of benchmarks by recommendations on how they can be achieved

Supplementation of benchmarks by recommendations on how they can be achieved

Supplementation of benchmarks by recommendations on how they can be achieved

by lea

Conclusions and recommendations

- Benchmarks cannot be defined and applied in isolation; they form an inseparable unit with the respective method and data basis used to derive them.
- It is necessary to complement benchmarks currently based on technical and/or economic feasibility by target values derived from planetary boundaries following a top-down approach
- Paris Agreement and its 1.5° C target calls for life cycle-based "(net) zero GHG emission" buildings including CO₂ removals.
- To improve environmental performance of buildings benchmarks and target values for further impacts are needed, e.g. resource consumption, risk to local environm.
- The benchmarks / target values relating to the life cycle can be sub-divided, into embodied / operational parts (among others), for guide / communication purposes.

Main results available from spring 2023

Rules and recommendations for the benchmarking and targetsetting for the lifecycle-based environmental performance

Target groups

- > Designer
- > Researcher
- > Policy maker
- > Industry

Application cases

- Design and decision making
- Sustainability assessment
- Standardisation
- Legislation
- 💠 Research

