

Welcome and Introduction

Meli Stylianou Natural Resources Canada BECWG Co-Chair

Session 1: Presentations and Q&A on *Modern* Building Code Approaches to Resilience and Multi-Hazard Mitigation

Three 15-minute presentations with Q&A after each. Moderated by Dr. Ellen Franconi.

- Ryan Colker on Advancing Resilience and Hazard Mitigation through Codes and Standards
- Dr. Shady Attia on Future-Proofing the EPBD: Multi-Hazard Resilience in Europe's Building Energy Codes
- Dr. Simona Bianchi on Multi-Hazard Risk and Resilience in Building Codes

Session 2: Panel Discussion on the *Potential of Artificial Intelligence (AI) for Building Energy Codes*

A 45-minute panel discussion with Dr. Nora Esram and Dr. Hanlong Wan. Moderated by Jean-Simon Venne

Session I.

Modern Building Code
Approaches to Resilience
and Multi-Hazard
Mitigation

Moderated by Dr. Ellen Franconi, Senior Research Engineer, PNNL

Advancing Resilience and Hazard Mitigation through Codes and Standards

Ryan Colker

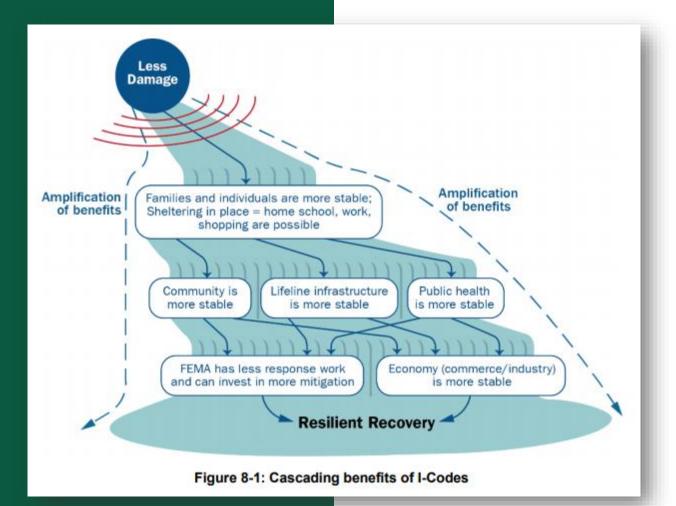
Executive Director, Energy, Resilience & Innovation
International Code Council

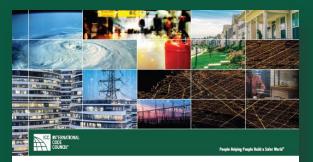
Advancing Resilience and Hazard Mitigation through Codes and Standards


Ryan Colker, Executive Director, Energy, Resilience & Innovation BECWG Symposium November 12, 2025

The Family of Building & Community Solutions

- Codes and Standards
- Personnel Training and Certification
- Product Evaluation
- Accreditation Services
- Codification & Administration Services
- Engineering Support
- Community Resilience Benchmarks™
- Third-Party Evaluation Services





International Initiatives & Action

- Buildings Breakthrough
 - Near-zero emission and resilient buildings as the new normal by 2030
 - Priority Action 1: Standards & Certifications; Priority Action 5: Capacity Building
- Declaration de Chaillot/Intergovernmental Council on Buildings & Climate
 - Developing policy recommendations, issuing common statements, and providing technical
 briefs to assist member states in advancing sustainable transformation in the building sector.
 - 6.1. Implementing long-term regulatory roadmaps and frameworks, mandatory building and energy codes for all buildings, or supporting the adoption of these at the subnational level; requiring integrated comprehensive design
- Market Transformation Action Agenda
 - The outcome is a co-created transformative action agenda guiding the path towards halving emissions by 2030 and reaching net zero by 2050.
 - Intervention 5: Standards Alignment
- Others: World Bank, OECD, UNDRR, IEA

The Important Role of Energy Codes in Achieving Resilience

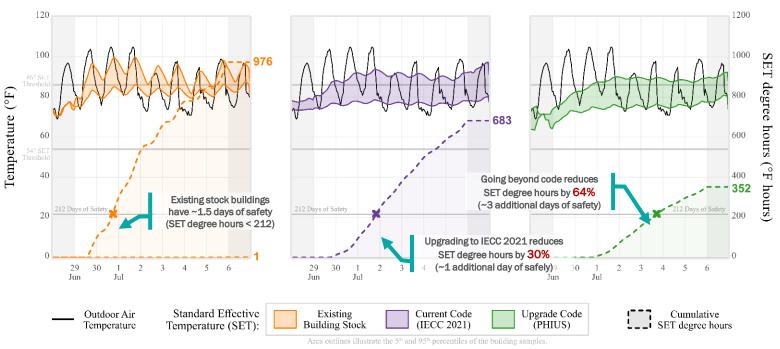
Energy Codes are a Resilience Strategy

Second in a series

https://www.iccsafe.org/wp-content/uploads/19-18078 GR ANCR IECC Resilience White Paper BRO Final midres.pdf

Energy Codes are a Resilience Strategy

Selected Code Topic	Relevant Sections (2018 IECC)	Supported Resilience Strategy	Relevant Hazards
Insulation	C402.2, R402.2	 Passive survivability Reduced energy burden Reduced grid impact Reduced ice-dams Reduced condensation, limiting mold and mildew 	 Extreme heat Extreme cold Snow storms Social resilience Secondary impacts to all hazards
Walk-In Coolers and Freezers	C403.10	 Food safety/preservation 	Extreme heatSecondary impacts to all hazards
Daylighting	C402.4.1	Passive survivabilityReduced grid impact	Extreme heatSecondary impacts to all hazards
Window-to-Wall Ratios	C402.4.1, R402.3	Passive survivabilityImpact vulnerabilities	Extreme heatExtreme coldHurricanesTornadoes
Solar Heat Gain Coefficient	C402.4.3, R402.3.2	Passive survivabilityReduced grid impacts	Extreme heatSecondary impacts to all hazards
Solar Reflectance of Roof	C402.3	Urban heat islandPassive survivability	Extreme heatSecondary impacts to all hazards
Air Leakage	C402.5, R402.4	 Contaminants (secondary to wild-fire, earthquake, etc.) Mold and mildew (secondary to flooding, hurricane, extreme cold, etc.) 	 Secondary impacts to all hazards
Pipe Insulation	C404.4, R403.4	Passive survivabilityReduced energy burden	Extreme coldDroughtSocial resilience
On-Site Renewable Energy	C406.5, Appendix CA, Appendix RA	Contribute to distributed generationFacilitates islandability	 Secondary impacts to all hazards


Table 1. Select Energy Code Provisions Contributing to Resilience

Benefit type	Energy efficiency outcome	Resilience benefit
Emergency response and recovery	Reduced electric demand	Increased reliability during times of stress on electric system and increased ability to respond to system emergencies
	Backup power supply from combined heat and power (CHP) and microgrids	Ability to maintain energy supply during emergency or disruption
	Efficient buildings that maintain temperatures	Residents can shelter in place as long as buildings structural integrity is maintained.
	Multiple modes of transportation and efficient vehicles	Several travel options that can be used during evacuations and disruptions
	Local economic resources may stay in the community	Stronger local economy that is less susceptible to hazards and disruptions
	Reduced exposure to energy price volatility	Economy is better positioned to manage energy price increases, and households and businesses are better able to plan for future.
Social and economic	Reduced spending on energy	Ability to spend income on other needs, increasing disposable income (especially important for low-income families)
	Improved indoor air quality and emission of fewer local pollutants	Fewer public health stressors
Climate mitigation and adaptation	Reduced greenhouse gas emissions from power sector	Mitigation of climate change
	Cost-effective efficiency investments	More leeway to maximize investment in resilient redundancy measures, including adaptation measures

Energy codes improve resilience

As building envelope improves via better codes, building occupants can remain safe for longer

Resilience

- Withstands shocks and stresses
- Enables rapid recovery
- Enhances occupant safety
- Promotes long-term durability

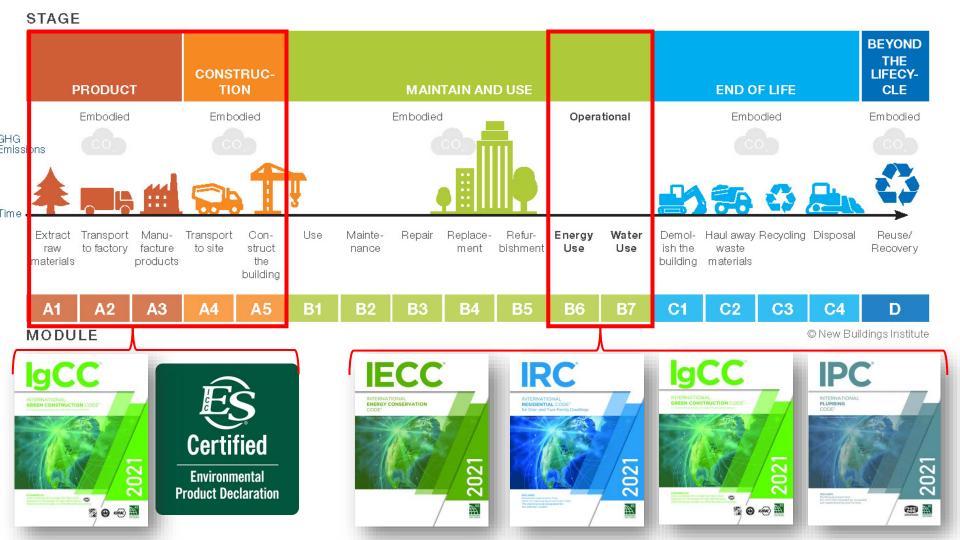
Circularity

- Minimizes waste and resource use
- Encourages reuse and recycling

Shared

strategies

& benefits


- Designs for adaptability and disassembly
- Reduces embodied carbon

- Adaptable design
- Durable materials

- Efficient Recovery
- Integrated Standards

Emerging Sustainability & Resilience Opportunities

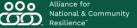
- Off-Site Construction
- Extreme Heat
- Energy Storage Systems
- Grid Interactivity
- Electrification
- Embodied Emissions

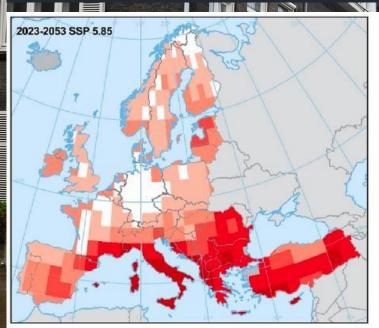
Building Life-Cycle GHG Impacts

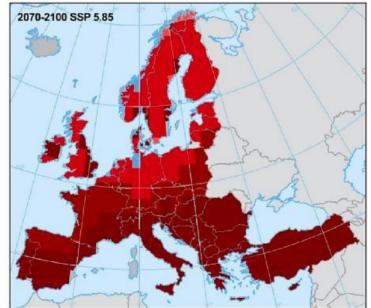
ASHRAE/ICC Standard 240 - Quantification of Life Cycle Greenhouse Gas Emissions of Buildings

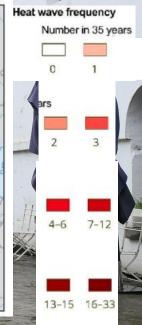
https://www.iccsafe.org/about/periodicals-and-newsroom/the-international-code-council-and-ashrae-seek-public-comments-on-proposed-standard-on-greenhouse-gas-emissions-evaluation/

Ryan M. Colker, J.D., CAE
Executive Director, Energy, Resilience & Innovation
Executive Director, Alliance for National & Community Resilience
International Code Council
200 Massachusetts Ave., NW #250| Washington, DC 20001
202-370-1800x6257 | 202-569-5795
rcolker@iccsafe.org • ANCR@resilientalliance.org
iccsafe.org • resilientalliance.org




Future-Proofing the EPBD: Multi-Hazard Resilience in Europe's Building Energy Codes


Dr. Shady Attia


Full Professor of Sustainable Architecture and Building Science, University of Liège, Belgium

Future-Proofing the EPBD:

Multi-Hazard Resilience in Europe's Building Energy Codes

shadv.attia@uliege.b

in /in/shady-attia-14352a7

www.shadyattia.org

Context

Modern Building Energy Code Approaches to Resilience and Multi-Hazard Mitigation

7th Annual Symposium on Building Energy Codes – hosted by the Building Energy Codes Work Group (BECWG) under the IEA Energy in Buildings and Communities Programme (EBC), organized by the Pacific Northwest National Laboratory (PNNL), held during the week of **November 10, 2025.**

Consortiums OCCuPANt & Surchauffe ISO/AWI 52016-3

ISO/TC 163/SC2/WG 15

IEA Annex 80

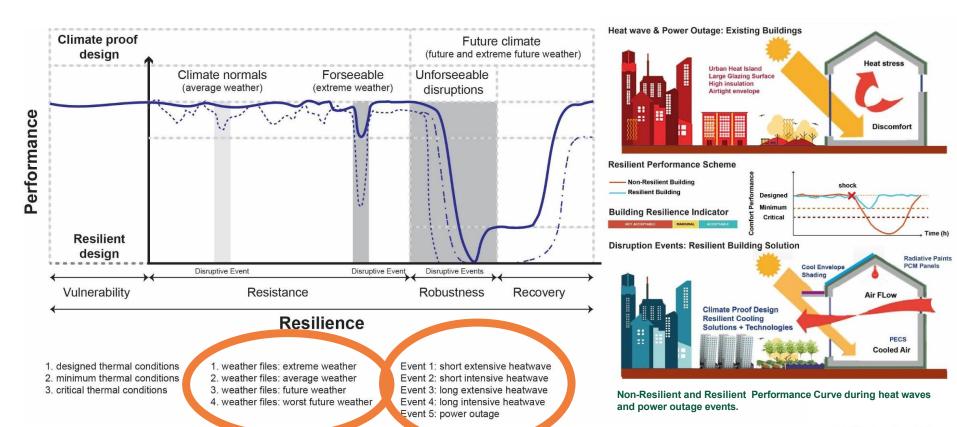
Energy in Buildings and Communities Programme

Multi-Hazard Resilience

Drought

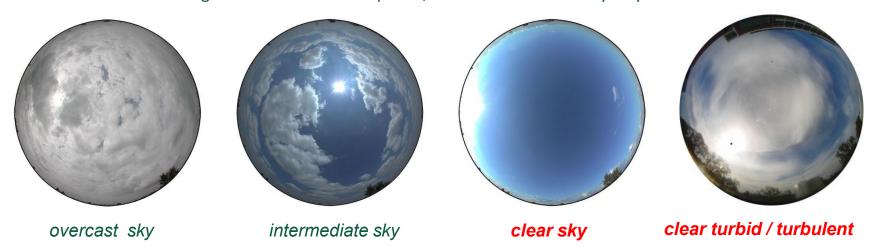
Floods

Heatwaves



Fires

Blackout


Definition: Resilience vs. Shock = FAILURE

Relevance to Europe

CIE Standardized Skies in Europe

Mediterranean overheating and Northern cold-snap risks; EPBD focus on efficiency only.

climate trends and EPBD recast objectives. Show that EU codes still emphasize energy efficiency but rarely account for resilience.

Conflicting & Complementary Measures

in Resilient Building Design

Drought

Floods

Heatwaves

ires

Blackout

Conflicting Measures

Airtightness Ventilation during heatwaves ↔

Full electrification ↔ Blackout

vulnerability

Acoustic insulation Natural

 \leftrightarrow

ventilation

PV dependency

Power outage risk

Complementary Measures

Shading + Thermal mass: reduce overheating & heating demand

Cool roofs + Natural daylighting: less cooling & lighting energy

Permeable landscape + Passive airflow design: flood mitigation

+ microclimate cooling

Hybrid systems (PV + thermal storage): energy

efficiency + backup resilience

Resilience and efficiency are not mutually exclusive: design intentions clash when multiple hazards are present.

IEA Annex 80: KPIs & Methods

Quantifying Thermal Resilience in Buildings

Aspect	Indicator (KPI)	Typical Threshold / Meaning
1. Overheating risk	Hours above 28 °C (adaptive comfort) → Overheating Hours (OH)	< 3 % annual hours → acceptable risk (EU EPBD benchmark)
2. Thermal autonomy	Number of hours indoor T remains within comfort limits after loss of power	≥ 48 h = high resilience (Annex 80 definition)
3. Recovery time	Time to restore comfortable range after blackout or peak event	≤ 6 h good ; > 12 h poor response
4. Adaptive comfort duration	Cumulative period in which indoor operative T follows adaptive comfort band	> 85 % hours = resilient occupant comfort
5. Hygrothermal stress index (optional)	Wet-bulb globe temperature (WBGT) and heat index	WBGT < 30 °C for safe occupancy periods

KPIs can be used to inform Life Cycle Impact Assessment (LCIA) by weighting resilience indicators (e.g., overheating hours, recovery time) according to event probability and duration. 7/11

Implementation Barriers

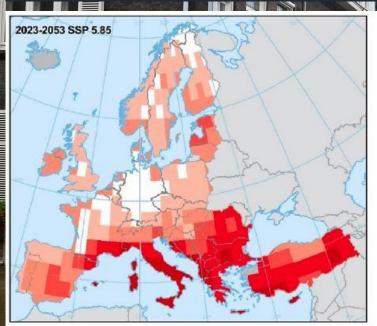
Europe needs resilience metrics that can guide renovation wave priorities.

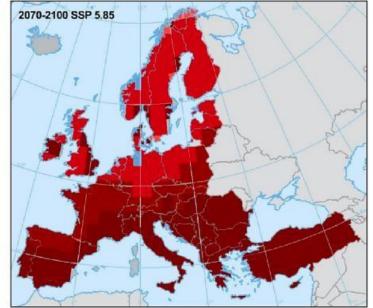
- 1 Misalignment Between Public Perception and Climate Reality
- 2 The EPBD's Legal Mandate Is Energy-Centric
- 3 Lack of harmonized link between resilience KPIs and life cycle impact assessment (LCIA) indicators.
- 4 Policy Saturation and Fatigue
- 5 Research-Policy Gap

Future-Proof EPBD Vision

From energy-only compliance to climate-proof performance

- 1. Add "Resilience Performance Indicators" to EPBD annexes (and EPCs)
- 2. Couple Life Cycle Impact Assessment (LCIA) with risk-based design to capture both long-term efficiency and short-term hazard performance. (mitigation + adaptation in one loop)
- 3. Harmonize with standards & data (make it implementable)




References

- •Al-Assaad, D., Sengupta, A., An, P., Breesch, H., Afshari, A., Amaripadath, D., **Attia, S.**, ... Zinzi, M. (2025). Resilient passive cooling strategies during heat waves: A quantitative assessment in different climates. *Building and Environment, 274*, 112698. https://doi.org/10.1016/j.buildenv.2025.112698
- •Amaripadath, D., Levinson, R., Rawal, R., & **Attia, S.** (2024). Multi-criteria decision support framework for climate change-sensitive thermal comfort evaluation in European buildings. *Energy and Buildings*, 303, 113804. https://doi.org/10.1016/j.enbuild.2024.113804
- •Amaripadath, D., Mirzaei, P. A., & **Attia, S.** (2024). Multi-criteria thermal resilience certification scheme for indoor built environments during heat waves. *Energy and Built Environment*. https://doi.org/10.1016/j.enbenv.2024.05.001
- •Amaripadath, D., Prasad, D., Safi, T. O., & **Attia, S.** (2024). Design optimization of an assisted living facility to improve summer thermal comfort in warming climates. Journal of Building Engineering, 109814. https://doi.org/10.1016/j.jobe.2024.109814
- •Attia, S., Benzidane, C., Rahif, R., Amaripadath, D., Hamdy, M., Holzer, P., ... Carlucci, S. (2023). Overheating calculation methods, criteria, and indicators in European regulation for residential buildings. *Energy and Buildings*, 292, 113170. https://doi.org/10.1016/j.enbuild.2023.113170
- •Attia, S., Levinson, R., Ndongo, E., Holzer, P., Kazanci, O. B., Homaei, S., ... Heiselberg, P. (2021). Resilient cooling of buildings to protect against heat waves and power outages: Key concepts and definition. *Energy and Buildings*, 239, 110869. https://doi.org/10.1016/j.enbuild.2021.110869
- •Bertini, A., Al-Obaidy, M., Dasse, M., Amaripadath, D., Gobbo, E., & **Attia, S.** (2025). Parametrization of variables affecting the whole life carbon performance of nearly zero-energy residential building renovation. *Building and Environment*, 113013. https://doi.org/10.1016/j.buildenv.2025.113013
- •Duan, Z., de Wilde, P., **Attia, S.**, & Zuo, J. (2025). Challenges in predicting the impact of climate change on thermal building performance through simulation: A systematic review. *Applied Energy*, 382, 125331. https://doi.org/10.1016/j.apenergy.2025.125331
- •Amaripadath, D., Azar, E., Singh, M. K., & **Attia, S.** (2024). Heat exposure mitigation in renovated nearly zero-energy dwellings during concurrent heat waves and power outages. *Journal of Building Engineering*, 91, 109655. https://doi.org/10.1016/j.jobe.2024.109655
- •Amaripadath, D., Paolini, R., Sailor, D. J., & **Attia, S.** (2023). Comparative assessment of night ventilation performance in a nearly zero-energy office building during heat waves in Brussels. *Journal of Building Engineering*, 78, 107611. https://doi.org/10.1016/j.jobe.2023.107611
- •Rahif, R., & **Attia, S.** (2023). CFD assessment of car park ventilation system in case of fire event. *Applied Sciences, 13*(18), 10190. https://doi.org/10.3390/app131810190
- •Rahif, R., Hamdy, M., Homaei, S., Zhang, C., Holzer, P., & **Attia, S.** (2022). Simulation-based framework to evaluate resistivity of cooling strategies in buildings against overheating impact of climate change. *Building and Environment, 208*, 108599. https://doi.org/10.1016/j.buildenv.2021.108599
- •Amaripadath, D., Sailor, D. J., Bertini, A., Barker, M., & **Attia, S.** (2025). Are net zero energy buildings necessarily also net zero emission buildings? Time-integrated analysis using dynamic grid emission factors. *Building and Environment, 283*, 113367. https://doi.org/10.1016/j.buildenv.2025.113367
- •Machard, A., Salvati, A., Tootkaboni, M. P., Gaur, A., ... Attia, S., ... Holzer, P. (2024). Typical and extreme weather datasets for studying the resilience of buildings to climate change and heatwaves. *Scientific Data*. (Check correction note: 2025 author correction) https://doi.org/10.1038/s41597-025-04420-2

Future-Proofing the EPBD:

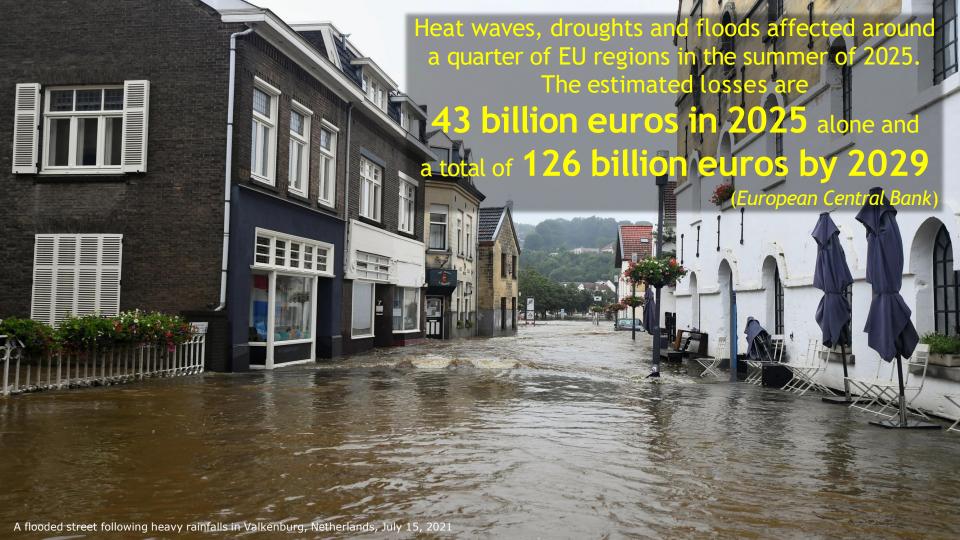
Multi-Hazard Resilience in Europe's Building Energy Codes

shadv.attia@uliege.b

in /in/shady-attia-14352a7 www.shadyattia.org

Heat wave frequency

Number in 35 years



Multi-Hazard Risk and Resilience in Building Codes

Dr. Simona Bianchi

Assistant Professor, ReStruct Group within the Faculty of Architecture and The Built Environment at TU Delft

Climate Risks: The Netherlands

Heat Wave

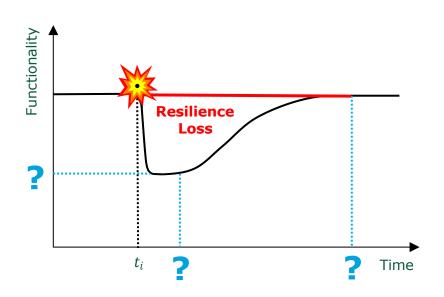
Heavy Precipitation

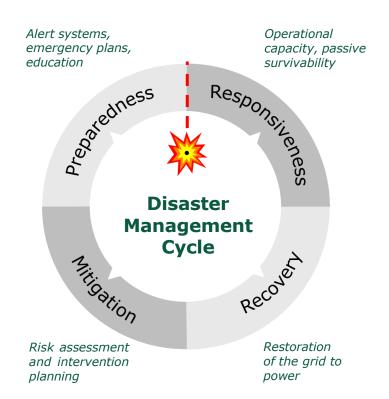
Strong Wind

Coastal Flooding & Storm Surge

River Flooding

Hail


Drought



(KNMI, 2023)

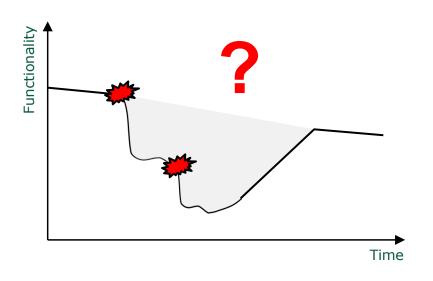
Resilience concept

Resilience in Building Codes: The Netherlands

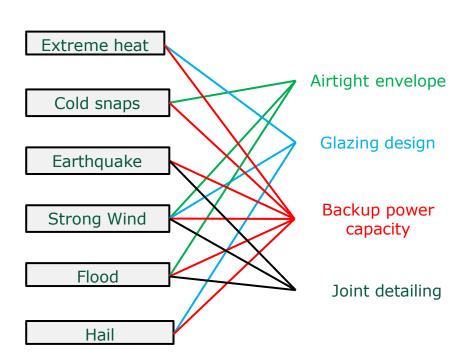
Energy efficiency

- 1) Outdoor climate NEN 5060: 2018
- 2) BENG (Bijna Energie Neutraal Gebouw) - Bouwbesluit 2012, NTA 8800:2020
- 3) Energy Label EPBD Directive

Thermal resilience

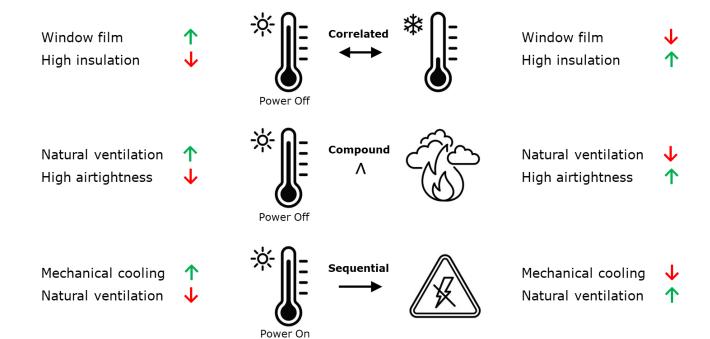

- 1) TO-July (Temperature Exceedance in July)
- 2) Heat Label 2021 NKWK project *Heat in the Home*
- 3) Frailty index

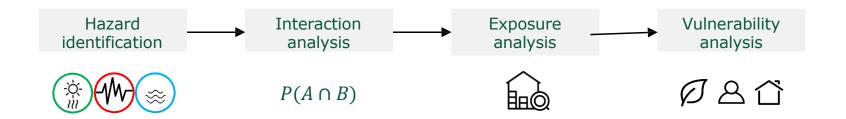
- → Build knowledge about cooling needs
- → Effectiveness of possible measures
- → Policy instruments for cooling


Multi-Hazard Resilience concept

- → Type of interaction
 - Independent
 - Cascading
 - Change condition
 - Compound
 - Mutual exclusion
- → Probable multi-hazard event set
- → Spatial and temporal evolution

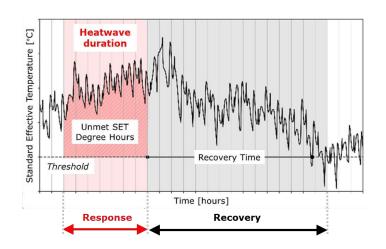
Multi-Hazard Resilience in Building Codes


Complementary measures


- Retains heat, reduces indoor heat loss
- Reduces uncontrolled drafts and infiltration
- Prevent water ingress
- Reduces solar heat gain
- Strong glazing resists wind pressure
- Can resist damage from hailstones
- Powers cooling / heating systems
- Can supply emergency systems if grid fails
- Can power critical systems if grid fails
- Allows differential movement
- Prevent façade or window failure
- Prevent water ingress

Multi-Hazard Resilience in Building Codes

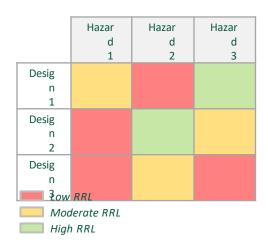
Conflicting considerations

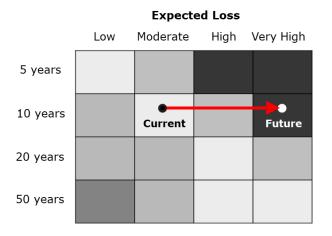

- 1) Definition of multi-hazard events and consequences
 - Type of interaction
 - Impact assessment

Bianchi et al. (2024) Resource-efficient climate-resilient buildings by multi-hazard risk modelling & resilience-oriented decision-making. Veni AES 2023, no. 21129.

2) Holistic assessment methods

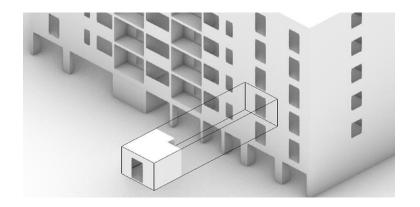
- Multi-domain approach
- Time-dependent behaviour

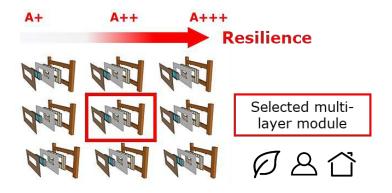



Bianchi et al. (2025) Resilience Readiness Levels for Buildings: Establishing Multi-Hazard Resilience Metrics and Rating Systems. International Journal of Disaster Risk Reduction, 128.

3) Multi-performance design requirements

- Resilience levels
- Risk targets

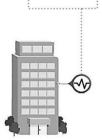


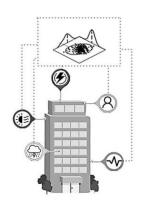


Bianchi et al. (2025) Resilience Readiness Levels for Buildings: Establishing Multi-Hazard Resilience Metrics and Rating Systems. International Journal of Disaster Risk Reduction, 128.

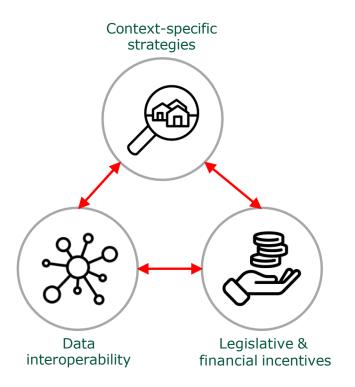
4) Multi-scale mitigation strategies

- Occupant-Building
- Component-Building
- Building-Grid




Bianchi, Overend et al. (2023) Multi-hazard low-carbon resilient technologies and multi-scale digital services for a future-proof, sustainable user-centred built environment. Horizon Europe project, GA no. 101123467.

Advancing Energy Building Codes


Multi Hazard Resilience

- 1) Extreme and future hazards
- 2) Standardized approach for resilience quantification
- 3) Resilience design criteria and targets
- 4) Integrated energy efficient and resilient technologies

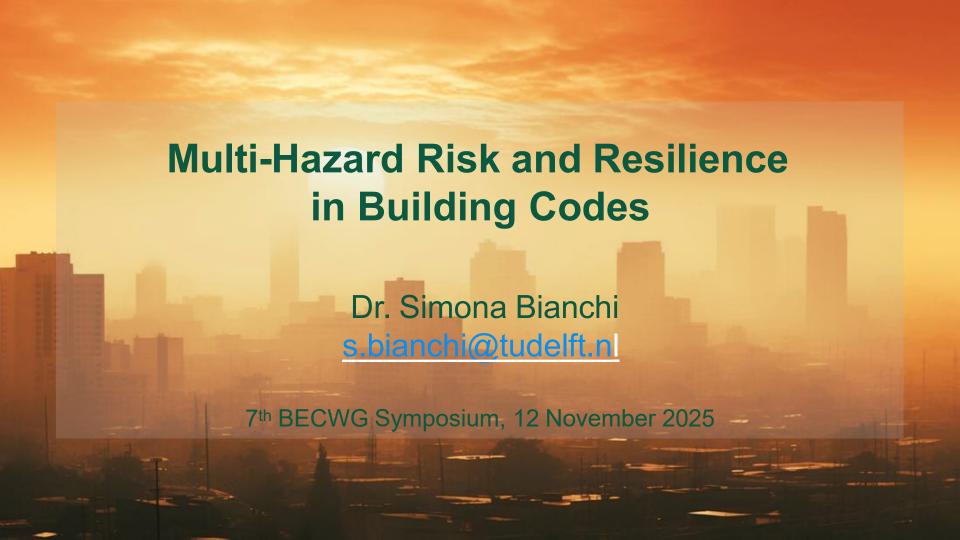
- 1) Definition of multi-hazard events and consequences
- 2) Holistic assessment methods
- 3) Multi-performance design criteria and targets
- 4) Multi-scale mitigation strategies and benefits

Knowledge Gaps and Challenges

- Data availability on behaviour under failure modes
- Advancing current practice through training programmes
- Lack of resilience design, assessment and decision support digital tools

MULTI-hazard low-**Ca**rbon **RE**silient technologies and multiscale digital services
for a future-proof, sustainable usercentred built environment

Bianchi S., Overend M., et al.



Resource-efficient climateresilient buildings by multi-hazard risk modelling & resilience-oriented decision-making

Bianchi S., et al.

Session II. The Potential of Artificial Intelligence (AI) for Building Energy Codes

Moderated by Jean-Simon Venne, President, Founder and CTO of BrainBox AI

The Potential of Artificial Intelligence (AI) for Building Energy Codes

Dr. Nora EsramCEO, New Buildings Institute

Dr. Hanlong WanMechanical Engineer, PNNL

Concluding remarks

Meli Stylianou Natural Resources Canada BECWG Co-Chair

Thank you!

