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EXECUTIVE SUMMARY 

A Net Zero Energy Building (Net ZEB) is succinctly described as a grid-connected building that 

generates as much energy as it uses over a year. The “Net Zero” balance is attained by 

applying energy conservation and efficiency measures and by incorporating renewable energy 

systems. The main objective of this report is to analyze the usefulness and relevance of 

proposed Load Match and Grid Interaction (LMGI) for Net Zero Energy Buildings. The 

methodology is based in the analysis of available high-resolution data (mainly hourly) both from 

simulated and monitored Net ZEBs (Net Zero Energy Buildings) or nZEB (nearly Zero Energy 

Buildings). The central question is to find a limited set of indicators which provide relevant 

information to building owners, local grid Distribution System Operators (DSO) when information 

from building simulations are available at design stage. 

The first two sections of the report introduces why load matching and grid interaction are key 

aspects to be analysed in Net ZEBs together with the fulfilment of the yearly energy balance 

between on-site generation and buildings load. Buildings will play a significant role as part of an 

energy system based on DER – Distributed Energy Resources. Section two analyses the 

subject from several perspectives from the operators of national energy grids to the building 

owners and users. More details and references to previous studies are given when the 

conditions for the distribution grids are discussed, as the buildings are mostly connected to the 

medium and low-voltage grid. Analysis concludes that an accurate analysis will need detailed 

information of the grid topologies, which in most of the cases is not the case when Net ZEBs are 

being planned. Also, it is highlighted that grid interaction is an aspect that should be analysed in 

the framework of urban planning (at the cluster of buildings level) more than at individual 

building level. 
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The third chapter of the report defines the load match and grid interaction indicators that should 

be computed with the case studies, together with describing the terminology. This is defined in 

coherence with the framework for Net ZEBs definition established in this current IEA Task. The 

indicators are computed in sixteen case studies. Seven of them are based on monitored 

buildings which are individual houses in Nordic countries (Sweden and Denmark), block of flats 

in Germany and Italy (with a CHP and GSHP with PV systems, respectively) and an office 

building in Singapore. Monitored data are from a complete year with different details of time 

resolution (from one minute to one hour). The nine case studies with simulated data use one-

hour time resolution. The simulated case studies cover different climates (from Finland to Spain) 

and several technologies, although the major part of them combines Heat Pump together with 

PV as strategy to become zero. A short description of all the case studies is given in section 3 

of the report. 

Chapter four presents the load match and grid interaction factors computed for all the case 

studies, with the exception of grid interaction indicators that could not be computed to the lack 

of the information of the design capacity connection. Results, benefits and drawbacks of the 

level of information given by each of the indexes have been discussed. Together with the 

numerical evaluation of the indicators, graphical representation of some indexes is proposed. 

The advantage of graphical representation is that it condenses a lot of information in a visual 

form. Graphical representation of load and supply cover factors (left and right, respectively in 

the next figure) in hourly values give a quite good picture of the correlation between on-site 

demand and supply of energy. It is possible to illustrate both the daily and seasonal effect, the 

production pattern of different renewable energy technologies, and applied operation/control 

strategies. 

 
 

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hour of day

M
e
a
n
 o

f 
L
o
a
d
 c

o
v
e
r 

fa
c
to

r

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hour of day

M
e
a
n
 o

f 
S

u
p
p
ly

 c
o
v
e
r 

fa
c
to

r

 

 

Jan

Apr

Jul

Oct



 IEA Joint Project SHC Task 40 / ECBCS Annex 52 
Load Match and Grid Interaction in NZEB 

Page 7 of 102 

 

A novel form of graphical representation using normalized load duration curve for net exported 

energy is proposed in this report. This graphical representation (see figure below) allows 

identifying the peak values of the net exported energy in a Net ZEB together with the profile of 

the grid interaction during the whole year knowing the percentage of time when the building is 

exporting energy. In the same graph, also the relation with the peak load, peak on-site 

generation and connection capacity are shown. 

 

The report concludes that load and supply cover factor, together with the loss of load probability 

are enough indexes to describe the relationship with the on-site generation and the buildings 

load. Complementary to the annual values, hourly mean monthly values have been 

demonstrated very useful for describing both the seasonal and daily variations. In the case of 

grid interaction factors, the indexes which have been demonstrated more useful are the ones 

that can be extracted from the hourly values of the net exported energy. Generation Multiple is a 

useful index which relates the minimum and the maximum peak powers of the net exported 

energy, which gives additional information if statistical analysis of net exported energy is done 

and different percentiles are used to analyse the information. Additional indicators as capacity 

factor or dimensioning rate are indicators which allow to know at which extent a building is using 

the grid, however it needs knowing the design connection capacity between the building and the 

low (or medium) voltage grid. It has been demonstrated that in some cases the information of 

design connection capacity is hard to be known for designers of Net ZEBs, but it can be 

substituted by a reference or limit value alternatively. Dimensioning rate and Generation 

Multiple indexes have been demonstrated the usefulness to analyse cluster of Net ZEBs 

buildings with a limited information of the grip typologies. 
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Although some aspects need to be developed in further research (as the extension to indexes 

to non-all electrical buildings) a selection of load match and grid indicators, together with 

graphical representation are proposed on the report based on their usefulness and their testing 

in both real monitored and simulated Net ZEBs. 
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ACRONYMS 

BAS Building Automation Systems 

CHP Combined Heat and Power 

DER Distributed Energy Resources 

DG Distribute Generation 

DHW Domestic Hot Water 

DSO Distribution System Operators 

EV Electrical Vehicle 

GI Grid Indicators 

GSHP Ground Source Heat Pump 

LM Load Match 

LMGI Load Match and Grid Interaction 

MB Monitored Building 

Net ZEB Net Zero Energy Buildings 

NRA National Regulatory Authority 

nZEB Nearly Zero Energy Buildings 

PV Photovoltaic 

RES Renewable Energy Source 

SB Simulated Building 

SH Space Heating 

TSO Transmission System Operator 

WP-SE Wood Pellet Stirling Engine 

ZEB Zero Energy Buildings 
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1 INTRODUCTION 

A thorough analysis of NZEBs must address the implications of two closely-related, highly 

dynamic phenomena: the continuous interplay between on-site generation and the building 

loads, and the resulting import/export interaction with the surrounding energy grid. The term 

load matching (LM) refers to the degree of agreement or disagreement of the on-site generation 

with the building load profiles; grid interaction (GI) refers to the energy exchange patterns 

between a building and the utility grid, and its impact on the overall load of the grid (Figure 1). 

Collectively, both issues are denominated LMGI. 

 

Figure 1. Load matching (left) refers to the relationship between a buildings own generation and load. 
Grid interaction (right) alludes to the relationship between the energy exported/imported to the grid and 
the load conditions of the grid itself. 

Net ZEBs have the dual role of being energy producers and consumers (“prosumers”). At all 

times, Net ZEBs must provide for the needs of their occupants by coordinating on-site 

generation with energy imports from the utility grid. Considering that Net ZEBs also export 

energy to the grid, their relationship with the utility grid is far more complex than that of 

conventional buildings, which may be seen as passive consumers. 
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Time is essential in the analysis of LMGI issues. While the design of Net ZEBs has often 

focused on long-term energy balances, energy exchanges at smaller time scales (monthly, 

daily, hourly, sub-hourly) are critical. Within a building or within a utility network –as in any 

energy system– the limiting factor is the maximum power that may be delivered or received. 

Consequently, even if a building achieves a long-term energy balance between energy 

generated and consumed, smaller time scales must also be considered. For example, from the 

utility’s point of view, if a Net ZEB is a heavy consumer in winter it will appear to be quite similar 

to a conventional building, requiring the use of additional generation and transmission capacity. 

Keeping in mind that the driving concept behind Net ZEBs is the reduction of the environmental 

impact associated with buildings (e.g., oversized building service systems, intervention of 

polluting “peaking” power plants, construction of additional generation capacity, etc.), a 

comprehensive look on Net ZEBs must address LMGI issues, including quantitative indicators 

to characterize these issues. This report focuses on load management/grid interaction, in 

particular in the development, compilation and assessment of appropriate quantitative 

indicators. 

For a long time the issue of the quality of exported energy and how it affects the energy system 

was out of the scope of Net ZEB concept. Buildings have been largely considered as passive 

consumers taking energy from the grid or other energy carriers (e.g., fuels) to supply their own 

needs. Whenever peak load reductions are achieved, it is often not the result of a deliberate 

effort, but the by-product of energy conservation measures (e.g., adding extra insulation results 

both in less energy use and smaller peaks). Annual energy use has traditionally been the gauge 

by which the energy performance of a building is described. Reducing peak loads adds an 

additional element of complexity to the task of maintaining a comfortable temperature while 

fulfilling all the other functions required in a building, such as communications, lighting, waste 

disposal, safety networks.  

Another reason for the increasing importance of LMGI is the trend towards a more complex, 

flexible and dynamic energy system (Figure 2), with more renewable energy systems (both 

centralized and distributed), energy storage devices, electric vehicles, and smart metering. In 

this new state of affairs, there will be a continuous, bi-directional exchange of energy and 

information between Smart Buildings and the Smart Grid. Building automation systems (BAS) 

will do more than provide the building occupants with expected comfort services; they will also 

make optimal decisions about storing, exporting or importing energy resources depending on 

expected weather and occupancy patterns, and in response to signals from the grid. 
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Figure 2. Links between the Smart Grid and Smart Buildings  

In [1] the following potential target audiences for LMGI indicators have been identified: 

 Building designers and owners 

 Community designers and urban planners 

 Grid operators at a local distribution level 

 Grid operators at a national or regional level 

 Policy makers and energy National Regulatory Authorities (NRAs). 
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2 TECHNICAL FRAMEWORK 

In this section, a revision of the technical and economic conditions that can have an impact in 

the design and operation of Net ZEB is to be done. The review will be made from several 

perspectives. Different countries perspectives need to be analysed and compared. 

2.1 NATIONAL / REGIONAL ENERGY SYSTEM 

Operators of national energy grids (TSO – Transmission System Operator) are familiarized with 

economic dispatch and planning the operation of generation plants and transmission lines 

based on expected loads. Aggregated grid indicators at hourly or even higher resolution could 

help to manage national grids and to increase the penetration of renewables in the electric 

power system, especially if high daily peak/base load ratios occur. 

As NZEB will be part of smarts grids, the question is whether NZEBs require a specific 

approach about integrating DER (Distributed Energy Resources) and power system balancing. 

As the penetration of NZEBs would probably be slow and limited in the near future (NZEB vs. 

nearly-ZEB) the question concerns more the impact of Net ZEBs in the mid and long term, as is 

the case of the forecasted role to play electrical vehicle (EV) for some TSO [18]. In any case, 

high resolution indicators linking Net ZEBs and national energy systems might be focused on 

strategic objectives (increasing the penetration of renewables or reducing external energy 

dependency) and they make sense if seasonal/daily variations need to be taken into account. 

These seasonal variations and features of the grid could vary from country to country and 

regionally within one country. Information or indicators for load matching and grid interaction 

can show whether added load and generation profiles will add to or reduce existing load 

variations, and thereby what to expect from Net ZEB expansion in the future. Figure 3 illustrates 

the difference of aggregated electrical generation profiles in Spain at winter and summer, 

showing the contribution of DER and wind generation to the total. Figure 4 illustrates the same 

concept for Sweden, where solar production is very low and the aggregated sum of renewable 

production is mainly due to wind. It can be appreciated that wind penetration in winter time in 

Spain can cover more than 30% of the electrical demand, especially at night. In the month of 

April 2013, power generation from renewable energy sources reached an all-time record 

representing 54% of production in Spain [27]. Also is clearly appreciated a pronounced 

seasonal variation in Sweden, and stronger daily fluctuations in load in Spain than in Sweden. 
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Figure 3. Electrical generation in Spain in winter (February 2010 - left) and summer (July 2010 - right) 
representative weeks. 

 

Figure 4. Electrical generation in Sweden in winter (January 2012 - left) and summer (July 2012 - right) 
representative weeks. 

It should be noted, though, that at this level (i.e., national grid) the co-location of the building 

demand and the on-site generation, which is characteristic for Net ZEBs, is not as significant as 

at the local grid level. To balance the power system over a given area, it does not matter if the 

building loads and generation are located in exactly the same spot or geographically separated. 
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2.2 ELECTRICITY DISTRIBUTION GRIDS 

This section makes a brief summary of the relevant concepts in power distribution and 

distributed generation necessary to understand the possible impact of Net ZEBs on distribution 

systems.  

2.2.1 DISTRIBUTION GRID STRUCTURE, OPERATION AND PLANNING 

The power system is constructed as a hierarchical arrangement, with a one-way flow of 

electrical power from a set of large-scale power plants to a large number of individual 

customers. Voltages are successively transformed to lower levels downstream in the grid. The 

distribution grid covers the lowest voltage levels and is usually divided into two parts, the 

middle-voltage (MV) grid, spanning 1-36 kV, and the low-voltage (LV) grid, with voltages below 

1 kV [7]. Typically, in European grids, the LV voltage is 0.4 kV and the MV voltage is 10 kV. 

Distribution grids are normally constructed based on radial feeders, with the transformer 

substation at one end and the last customer at the other, and a number of customers connected 

along the way. The limiting factor for a distribution feeder is the voltage drop downstream along 

the feeder, which increases with the total load and the cable impedance. 

Distribution system operators (DSOs) are required to keep network voltages within prescribed 

limits. According to the European standard EN 50160 [16], these are 90% and 110% of nominal 

voltage, but design limits are typically more narrow [8]. Primary transformer substations 

connecting the MV grid to the overlying high-voltage grid typically have automated voltage 

control through on-load tap changers to keep the voltage within bounds, but otherwise the 

distribution grid normally lacks surveillance and control. Secondary substations between MV 

and LV grids have manual tap-changer control with a constant turns ratio of the transformer that 

boosts the voltage to counteract the voltage drop in the MV grid.  

When planning a distribution grid, the major factor is the expected peak load on the grid. This 

determines how large power flows the grid components have to handle. Once the expected load 

distribution is known, cables and transformers can be dimensioned to avoid overloading and to 

keep voltages within prescribed limits. It is important to note the effect that load coincidence has 

on the expected peak powers. For a set of buildings, their respective peak loads may be 

occurring around the same time but not exactly simultaneously, which effectively reduces the 

total peak load per customer. A commonly used method to size cables, depending on how 

many customers are connected, is the Velander method [7], which, in a simple mathematical 

formula, relates the expected peak power of a certain customer type to the total annual 

electricity consumption of a group of customers. An example is shown in Figure 5. 
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This means, as an example, that each customer will contribute less to the capacity 

requirements of a main feeder connecting one hundred customers than to a single-customer 

connection downstream in the grid. As long as equipment connecting several customers is 

sized, load coincidence has to be taken into account. Thus, when grids for Net ZEBs are 

designed, or existing grids are adjusted for a conversion of buildings into Net ZEBs, similar rules 

of thumb will be useful, both for the load and generation parts.  

 
Figure 5. Peak power contribution of customers in a distribution grid as predicted by the Velander method 
[7]. Evaluated for buildings with heat pumps and an annual electricity demand of 10 MWh. 

2.2.2 HOSTING CAPACITY FOR DISTRIBUTED GENERATION 

Net ZEBs are part of the more general concept of distributed energy resources (DER)1, which is 

most straightforwardly defined as “electric power generation within distribution networks or on 

the customer side of the network” [9] Integration of DER into power systems is a large and 

active area of research that has given rise to a vast range of scientific publications. The most 

important findings are summarized in [8]. Distributed generation may be both beneficial and 

problematic for the operation of the distribution grid, depending on the penetration level. At 

modest penetration levels, DER provides benefits such as decreased losses in the local 

distribution grid and evened-out voltage profiles. For high penetration levels, injected DER 

power that is not consumed on-site may lead to substantial reverse power flows, increased local 

losses, overloading of grid components and voltage rise [10]. The impact of DER on grid 

voltages is outlined in Figure 6. Note that the grid voltage at any point in the grid is affected by 

the combined power flows to all customers. 

                                                
 
1 Also known as distributed generation (DG) 
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The hosting capacity concept has been introduced to describe and analyze the impact of 

distributed generation on a given distribution system design. In a very broad sense, the hosting 

capacity is the amount of distributed generation that can be connected to a distribution grid 

before the performance of the grid, measured by some suitable index, becomes unacceptable 

[8]. The concept is outlined in Figure 7. The performance index could be network losses, 

overloading of components, voltage levels or power quality measures. For distributed PV, which 

is the most common on-site power source for Net ZEBs, overloading and slow voltage 

variations are the most important factors [11][12]. Power quality issues, such as harmonic 

distortions, are normally resolved by PV inverters and fast irradiance fluctuations due to moving 

clouds over individual PV systems are still slow enough to be just on the verge of giving rise to 

flicker [8]. For spread-out PV systems, fast irradiance variability is reduced considerably [13] 

and does not have any impact on flicker-range voltage variations [8]. 

 

Figure 6. DG impact on voltages along a radial distribution feeder with 10 connected customers and a DG 
unit at the last node. At high load the voltage drop is reduced and at low load the voltage is raised above 
nominal. Reproduced from [10]. 



 IEA Joint Project SHC Task 40 / ECBCS Annex 52 
Load Match and Grid Interaction in NZEB 

Page 18 of 102 

 

 
Figure 7. Schematic outline of the hosting capacity concept. The hosting capacity is the penetration level 
of DER for which the chosen limit in performance is reached. 

Two factors in particular may limit the hosting capacity for Net ZEBs with on-site PV generation 

within existing distribution grids. First, there is a considerable reduction of the expected peak 

power demand of an aggregate of buildings due to random coincidence of loads, as predicted 

by the Velander method, but this is not the case for the total PV generation, since at clear 

weather all systems will produce their maximum power at the same time. This means that while 

the marginal capacity that has to be added to supply an increasing number of loads decreases 

upstream in the grid, the capacity increase due to PV is directly proportional to the total PV 

capacity. Consequently, for a large number of customers, the load will be much more evenly 

distributed over time than the PV generation. If the total annual demand and on-site supply are 

equal, higher grid capacities are required to deal with the PV supply than the demand.  

Second, tap-changers in secondary transformer substations are normally used to offset the 

nominal grid voltage to handle voltage drops. Since voltages in the grid are allowed to vary both 

above and below the nominal voltage, this allows a larger span of the voltage variations. At low 

load, connections upstream in the grid are maximally above nominal voltage, and at high load, 

connections downstream are maximally below nominal, as indicated by Figure 8. The figure 

also shows how this may limit the amount of PV generation possible to connect. Since the 

highest peak powers are injected at times of low overall load on the grid, the tap-changer offset 

could severely limit the allowed voltage variations due to on-site PV. 
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Figure 8. Schematic outline of how tap-changer voltage control limits the hosting capacity for DG. 

The hosting capacity for distributed PV depends on the structure, strength, load distribution and 

operation and control of the individual grid. There are several previous studies taking the above 

factors into account (see e.g. [10][14]), and all come to varying conclusions about hosting 

capacities and allowed penetration levels. In general, though, city grids are more robust than 

suburban or rural grids. For example, in a Swedish simulation study, it was found that 

representative rural and suburban grids could allow a 60% PV penetration of the annual 

demand before the allowed voltage was exceeded, while a representative city grid would allow 

PV penetrations three times higher than the annual demand [11]. 

The business-as-usual option to increase the hosting capacity of a distribution grid is grid 

reinforcement, i.e. using cables with lower resistance and reactance. However, these 

investments could prove costly for the DSO, which is why other options to increase the hosting 

capacity are currently studied in international research, including altered tap-changer control, 

reactive power provision by PV inverters, PV power curtailment and increased PV self-

consumption by demand response measures or local storage [14]. Studies for Sweden have 

shown that the former three methods can have a considerable impact on the highest peak 

injections [11], while the effect of demand-response measures, at least through automated 

appliance scheduling, is limited [15]. 
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2.2.3 RELEVANT HIGH-RESOLUTION INDICATORS FOR NET ZERO ENERGY BUILDINGS 

The above discussion highlights two things. First, planning for urban environments with Net 

ZEBs will require distribution grid planners to take both building loads and on-site generation 

into account; so that the grid can handle both the highest peak demands and the highest 

injected peak powers. Second, the Net ZEB design, with a fixed relation between the on-site 

generation and the building demand, provides planners with limits to the powers that must be 

handled by the distribution grid, i.e. if the power demand of the building is known, so is the 

amount of power generated on-site. For a given Net ZEB, or a set of Net ZEBs, it should be 

possible to find a relation between the expected peak demand and the expected peak power 

generation, which is the information required. 

The central physical parameter in the distribution grid interaction is the magnitude of the power 

(active and reactive) injected or consumed by a group of customers. This will determine the 

power flow through the grid components and, consequently, currents and voltage levels. 

Variability is not important per se, but variability and coincidence determine which power levels 

occur and how often. Relevant grid interaction indicators for distribution grid planning should 

show, or be based on: 

- The relation between the expected net peak power demand and the expected net peak 

power generation for an arbitrary set of typical buildings, both of these in relation to the 

total annual consumption/generation. With this information, it is possible to choose grid 

components that can handle all power imports and exports from any group of customers 

of varying size. Ideally, these should be in the form of rules-of-thumb or formulae similar 

to the Velander method. Note that load and generation coincidence are crucial for grid 

design and operation, hence an indicator for the individual building is not sufficient as 

long as components interconnecting several consumers are considered (which is mostly 

the case). 
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- The distribution of power exports and imports above a certain threshold value over a 

certain period of time (typically a year). This shows how often peak powers of a certain 

magnitude occur. It may be relevant, for example, if curtailment of injected power is 

required. Instead of dimensioning grids to handle all power exports and imports from 

buildings, requirements may be put on distributed generators to provide reactive power 

as grid support, or curtailment of the power output. There could also be requirements on 

generators to participate in frequency control and time-differentiated tariffs or other 

incentives could be given to the customers to alter their demand profiles. Quantifying the 

occurrence of peak powers of a certain magnitude indicates how often problematic 

levels are achieved with a certain building design and operation. 

2.2.4 REQUIRED ELECTRICAL PEAK LOADS FOR LOW-VOLTAGE SUPPLY 

As it has been highlighted before the expected peak power demand of one building or cluster of 

buildings is key information to generate relevant indicators or establish threshold values that 

indicators can refer to. As example, Table 1, shows the minimum electrical supply requirements 

in Spain [17]. 

Table 1.Minimum requirements for electrical supply in buildings in Spain 

Type Minimum Power 

Residential, Individual 
basic level 

5 750 W @ 230 V 

Residential, Individual 
high level2 

9 200 W @ 230 V 

Residential, Collective Simultaneity factor applied to sum of requirements for 
individual dwellings. (Plus ancilliary spaces) 

Office buildings 
100 W/m2 or 3 450 W/space @ 230 V 

Simultaneity factor = 1 
 

                                                
 
2 Residential dwelling with a higl level of electrical needs or with electrical heating/cooling system or with useful surface greater than 160 m2 
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2.3 BUILDING DESIGNERS / OWNERS PERSPECTIVE 

When evaluating load match and grid interaction, reliable or probable forecasts of the building 

energy consumption and production on hourly or sub-hourly scale are important. A significant 

challenge regarding this aspect is the lack of methodologies and standardised tools to make 

hourly or sub-hourly forecasts based on factors such as the number of occupants or orientation 

of the PV panels. The existing design approach and building certification programmes are 

mostly focused on the implementation of energy efficiency measures and hence reduction of 

energy use [24], and do not usually contain hourly load/generation profiles or, as maximum, 

contain average profiles. 

Economy is often the driving force of the building owners. Thus, when determining or evaluating 

the building’s energy export and import, the economic benefit is determined by the price 

difference between energy sold to the utility company and energy bought from the utility. These 

aspects may vary from country to country – and even within each country. As example, in 

Germany due to policy incentives, consumers receive less for electricity sold to the utility than 

what they pay for buying electricity from the utility. This makes it beneficial to maximise self-

consumption, i.e. minimising export of electricity to the grid.  In such a case, households would 

benefit from having PVs orientated east-west as they will produce electricity in the morning and 

in the afternoon, following the load profile. In the case of an office building, the PVs might be 

orientated south as peak load occurs during midday. If an opposite price regime occurs, for 

example by feed-in tariffs, that makes the price of electricity sold to the grid higher than the 

price of electricity bought, the orientation of the PV panels should give the maximum production 

regardless of the shape of the load profile, as the matching is not an important issue. If the spot 

price of electricity is the only incentive (no subsidies or other policy incentives), the owner may 

shift load according to the fluctuating electricity price, hour by hour. In both the first and the last 

case, more flexible demand will make the building more capable of profiting from its onsite 

production. In these cases, building designers or owners should arrange for making the load 

and grid interaction as flexible as possible.  
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3 LMGI INDICATORS 

3.1 INTRODUCTION 

This section presents quantitative and relevant indicators that can be used to describe Load 

Matching and Grid Interaction (LMGI) conditions in net-zero or near net-zero energy buildings 

(Net ZEBs). Load Matching refers to how the local energy generation compares with the 

building load. Grid Interaction refers to the energy exchange between the building and an 

energy infrastructure, typically, the power grid. These are independent, but intimately related 

issues. The main distinction made here is that load matching indicators measure the degree of 

overlap between generation and load profiles (e.g. the percentage of load covered by on-site 

generation over a period of time) whereas grid interaction indicators take aspects of the 

unmatched parts of generation or load profiles into account (e.g. peak powers delivered to the 

electricity distribution grid).  

A comprehensive revision of LMGI indicators are given in [1] together with some proposals for 

alternative indicators. These indicators have been used to evaluate Net ZEB test cases 

[1][6][21], while some other indicators are also proposed in the literature [5][20][23]. The 

indicators selected and described in this section will be evaluated in the following sections 

through case studies. 
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3.2 TERMINOLOGY 

The sketch depicted in Figure 9 provides an overview of relevant terminology addressing the 
energy use in buildings and the connection between buildings and the power grid.  

 

Figure 9. Schematic view of the energy flows in a Net ZEB 
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Nomenclature 

t time 
e, E exported energy 
d, D delivered energy 
ne net exported energy 
g, G on-site generation 
 gnet net on-site generation 
 ggross gross on-site generation 
  ̅ average on-site generation 
sc charging storage energy 
sdc discharging storage energy 
S storage energy balance 
Us Internal storage energy 
T evaluation period 
  start of  the evaluation period 
  end of  the evaluation period 
w weighting factor 
l, L load 
 lnet net load 
 lgross gross load 
   ̅ average load 
  energy losses 
    generation energy losses 
    storage energy losses 
      Building technical systems energy losses (excluding storage) 
    Load energy losses (e.g.: distribution losses) 
BTS Building Technical Systems 
Edes Designed/required connection capacity 
 
Subindex 
 
i  energy carrier 
d  delivered 
e  exported 
b  building 
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The core principle for Net ZEBs is the balance between the weighted demand and weighted 

supply [2], which is described in Eq. 1, based on delivered and exported energy quantities, 

where i stands for energy carrier. 

∑∫   ( )      ( )    

  

   

 ∑ ∫   ( )      ( )    

  

   

       

  Eq. 1 

A general energy balance in the building is represented with Eq. 2 
 

    ( )   ( )      ( )    ( )    ( )      ( )   ( )   
   
  

 

  Eq. 2 

where 

       ( )      ( )    ( ) Eq. 3 

   ( )     ( )    ( )  
   

  
 Eq. 4 

  ( )    ( )     ( )    ( )  
   

  
 Eq. 5  

       ( )      ( )    ( ) Eq. 6 

If we integrate over time between 1 and 2 (the evaluation period), then we have 

∫     ( )

  

  

 ∫  ( )

  

  

 ∫       ( )

  

  

 ∫     ( )

  

  

 ∫  ( )

  

  

 ∫  ( )

  

  

 

  Eq. 7 

∫     ( )

  

  

 ∫  ( )

  

  

 ∫       ( )

  

  

 ∫     ( )

  

  

 ∫  ( )

  

  

 ∫   ( )

  

  

     

  Eq. 8 
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If we consider that over the evaluation period,      , then: 

∫     ( )

  

  

 ∫  ( )

  

  

 ∫     ( )

  

  

 ∫  ( )

  

  

 ∫  ( )

  

  

  

  Eq. 9 

Net exported energy is defined as: 

   ( )   ( )   ( ) Eq. 10 

A graphical presentation using Sankey diagrams could help to understand the energy flows and 

the energy balance. An example for a Norway case is presented here.  

 

Figure 10. Schematic illustration in form of a Sankey Diagram for a Net ZEB  [21] 
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3.3 LOAD MATCH INDICATORS 

Load match indexes intend to describe the degree of the utilisation of on-site energy generation 

related to the local energy demand. 

3.3.1 LOAD MATCH INDEX 

The first proposed index was the load match index [22], defined as the average value over an 

evaluation period of how the on-site generation covers the energy load. The load match index 

intends to describe the matching degree between on-site energy generation and the building 

load. As higher the index is, better the coincidence between the load and the onsite generation. 

The formulas describing the load match index vary from very general ones [2,22], which do not 

specify if storage and losses of energy are included, to very clear definitions [1, 6]. 

       
 

 
 ∑    [  

 ( )

 ( )
]     Eq. 11 [2] 

         [  
 ( )   ( )   ( )

 ( )
]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 
∑    [  

 ( )   ( )   ( )
 ( )

]
  
  

 
 

  Eq. 12 [1] 

where N is the number of samples in the evaluation period, from 1 to 2. In case that hourly 

resolution data are used and the evaluation period is a complete year, the number of samples is 

8760. 

In this study the most detailed formula is used, which indicates that storage as well as losses of 

energy should be included in the load match index calculation.  

3.3.2 LOAD COVER FACTOR AND SUPPLY COVER FACTOR 

Load cover factor is also described in [1] and represents the percentage of the electrical 

demand covered by on-site electricity generation and is defined as 

      
∫    [ ( )   ( )   ( )  ( )]  
  
  

∫  ( )  
  
  

 

  Eq. 13 
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Then a complementary index, the supply cover factor, can be defined representing the 

percentage of the on-site generation that is used by the building. Mathematically, it could be 

defined as: 

        
∫    [ ( )   ( )   ( )  ( )]  
  
  

∫ [ ( )   ( )   ( )]  
  
  

 

  Eq. 14 

or as in equation Eq. 15, if storage and system losses are not subtracted from the on-site 

generated energy. 

        
∫    [ ( )   ( )   ( )  ( )]  
  
  

∫  ( )  
  
  

 

  Eq. 15 

In [20], two factors are computed. The REF – Renewable Energy Factor (very similar to the load 

cover factor) and the REM – Renewable Energy Matching (similar to the supply cover factor). 

    
∫    [ ( )   ( )  ( )]  
  
  

∫  ( )  
  
  

 

  Eq. 16 

    
∫    [ ( )   ( )  ( )]  
  
  

∫  ( )  
  
  

 

  Eq. 17 

In [5], the demand cover factor (or self-generation) for all-electric buildings are defined as:  

   
∫    [     ]  
  
  

∫     
  
  

 

  Eq. 18 
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Where PS is the local power supply and PD the local PV power demand. The term    [     ] 

represents the part of the power demand instantaneously covered by the local PV power supply 

or the part of the power supply covered by the power demand. Also, in [5], the supply cover 

factor (or self-consumption) for all-electric buildings is defined as:  

   
∫    [     ]  
  
  

∫     
  
  

 

  Eq. 19 

Table 2 shows the equivalence between the load and supply cover factors and other 

nomenclatures for the load match indexes in the literature. 

Table 2. Equivalence of cover factors in the literature 

Load Cover factor 
      

Renewable Energy Factor 
REF 

Demand cover factor 
(self-generation) 

   
 

Supply cover factor 
        

Renewable Energy Matching 
REM 

Supply cover factor 
(self-consumption) 

   
 

[1] [20] [5] Literature  

references 

 

A conceptual item related with the computation of the cover factors (and thus related with the 

computation of share of renewables in a building) is the treatment of losses. In the 

nomenclature, we have distinguished between: 

 Storage losses 

 Building technical systems losses (excluding, storage losses) 

 Load losses (for example, distribution losses) 
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In Eq. 13, Eq. 14 and Eq. 15, the sum of the storage losses and the variation of internal energy 

in the storage sub-system (S(t)) and the system losses ( ( )) are subtracted from the on-site 

generation. In [1], system losses are subtracted from on-site generation In [21], storage losses 

and distribution losses are distinguished. Although is not completely clear, it seems that only 

storage losses (difference between charging and discharging storage system) is subtracted 

from on-site generation to compute the load match factor In [6], same computation as in [1] is 

used. 

In [20], two factors are computed. The REF – Renewable Energy Factor (very similar to the load 

cover factor) and the REM – Renewable Energy Matching (similar to the supply cover factor). 

Although losses are considered in the balance, they are not subtracted to the on-site generation 

to compute REF or added to the load to compute REM. ES(t) and HS(t) in [20] represents 

storage balance in the battery (ES) and in the solar tank of the system (HS) (then charging 

minus discharging). In [5], where Eq. 18 and Eq. 19 are defined, no electrical storage system is 

considered in the model and a water storage tank is considered as part of the thermal building 

system model. The model only includes BIPV as renewable generation system and is 

connected to the electrical grid. 

3.3.3 DIFFERENCE BETWEEN LOAD COVER FACTOR AND LOAD MATCH INDEX 

The two factors can be defined either in the continuous domain, i.e. using integral notation (∫), or 

in the discrete domain, i.e. using the summation notation (∑). In literature the load cover factor, 

      is presented with the integral notation [1][5] while the load match factor,      , is presented 

with the summation notation [2]. For the sake of comparability they are both presented here in 

the integral notation, given that the considerations developed below would hold true also for the 

summation notation. 

The two factors are meant to express the same thing, i.e. the share of the load (energy 

demand) that is covered by the on-site generation (energy supply) for a specific energy carrier. 

Nevertheless the two factors are not identical, since their mathematical definition is different, as 

shown in the following table. The factors are first defined as found in literature, but using integral 

notation for both of them and using the same nomenclature. Thereafter the two factors are 

further manipulated in order to write them in a comparable fashion and highlight the difference. 
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load cover factor,       load match index,       
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It should be noticed the difference inside the integral sign: while the load cover factor       has 

  ̅⁄ , which is a constant quantity, the load match factor       has   ⁄ ( ), which is a quantity 

varying with time. This causes a numerical difference between the two indicators, which in most 

cases may be expected to be small but is nevertheless a difference.  

It may be argued that       has a somehow more intuitive definition, being the ratio between two 

quantities. Furthermore, a closer look shows that actually       beholds a mathematical property 

that       does not have, as shown below. With starting point from the last form of       

equation form the previous table it can be seen that: 

      
 

 ̅
 
 

 
∫    [ ( )  ( )]    

 ̅

 ̅

  

  

 

  Eq. 20 

if we define  ̅ = average  , where: 

     [ ( )  ( )] 
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Therefore       represents the arithmetic average between two quantities. The same cannot be 

said for       since it contains inside the integral the time dependent term   ⁄ ( ). This gives to 

the load cover factor       a somewhat more elegant mathematical formulation than the load 

match factor      . 

Finally, as discussed in [5] and in the previous sub-chapter 3.3.2, the load cover factor       

may be used in combination with the supply cover factor        , which is defined in a 

symmetrical way as the share of the on-site generation (energy supply) that is covered by the 

load (energy demand). The two cover factors       and         would have the same numerical 

value when the balance for the energy carrier is exactly zero in the observed period, while it 

would differ for nearly zero or plus balances. An attempt to create a similar symmetrical factor of 

      would fail to reproduce the same behaviour – i.e. having the same numerical value when 

balance is exactly zero – for the reasons explained above. 

In conclusions, although the two indicators appear similar, the load cover factor is to be 

preferred for the reasons explained here and it is proposed to be used instead of the load match 

index. The rest of this report will therefore address the load cover factor       and disregard the 

load match index      . 

3.3.4 LOSS OF LOAD PROBABILITY 

The loss of load probability (LOLP) can be defined as the percentage of time that the local 

generation does not cover the building demand, and thus how often energy must be supplied by 

the grid. This index could be useful to evaluate different load control strategies in a building. 

      

∫   
  
   ( ) ( ( )  ( )  ( ))

 

     
 

  Eq. 21 

An equivalent method to define this indicator based on exported/delivered energy is: 

      
∫   
  
    ( )  

 

 
 

  Eq. 22 
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3.4 GRID INTERACTION FACTORS 

Grid interaction factors can be computed using actual power values or can be presented using 

normalized values. As the objective of computing grid interaction factor is to measure how the 

utilisation of the grid connection is in relation to the building or a cluster of buildings, we 

propose to use the design connection capacity as normalizing quantity. 

The nominal grid connection capacity is denoted by Edes 

3.4.1 PEAK POWER GENERATION/EXPORTED 

This indicator represents the normalized peak value of the on-site generation or exported 

energy. 

    ̅̅ ̅̅ ̅̅  
    

    
 
   [ ( )]

    
 Eq. 23 

 ̅  
 

    
 
   [ ( )]

    
 Eq. 24 

3.4.2 PEAK POWER LOAD/DELIVERED 

The normalized peak power of the load or delivered energy is represented by the following 

equations. 

    ̅̅ ̅̅ ̅̅  
    

    
 
   [ ( )]

    
 Eq. 25 

 ̅  
 

    
 
   [ ( )]

    
 Eq. 26 

3.4.3 GENERATION MULTILPLE 

The generation multiple relates the size of the generation system with the design capacity load. 

It is expressed as the ratio between generation/load peak powers or exported/delivered peak 

powers. 

  (  ⁄ )  
    

    
 
   [ ( )]

   [ ( )]
 Eq. 27 

  (  ⁄ )  
 

 
 
   [ ( )]

   [ ( )]
 Eq. 28 
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3.4.4 DESIGN RANGE 

The design range is defined as the amplitude between the generation/load or the 

exported/delivered energy values. 

               Eq. 29 

3.4.5 NET EXPORTED VALUES AND RANGES 

Defining the normalized variable for the net exported energy as: 

  ( ̅̅ ̅̅ ̅̅ )  
  ( )

    
 Eq. 30 

The maximum and minimum peak power can be defined as: 

     ̅̅ ̅̅ ̅̅ ̅̅     [  ( ̅̅ ̅̅ ̅̅ )]  Eq. 31 

     ̅̅ ̅̅ ̅̅ ̅̅     [  ( ̅̅ ̅̅ ̅̅ )]  Eq. 32 

Having the possibility to statistically analyse net export values, the following values can be 

computed 

           
|     |

|     |
;           

|  ( )   |

|  ( )  |
;  

          
|  ( )   |

|  ( )  |
 ;            

|  ( )   |

|  ( )   |
 

                                          

                                          

3.4.6 CAPACITY FACTOR 

The capacity factor shows the total energy exchange with the grid divided by the exchange that 

would have occurred at nominal connection capacity, i.e., a measure of the utilisation of the grid 

connection.  

      
∫ |  ( )|  
  
  

      
 Eq. 33 
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We discard to use the alternative capacity factor defined in [1] which indicates the path of the 

energy exchange with the grid. Although, it makes sense for instantaneous values or short 

periods of time, the annual value for a Net ZEB with the definition in [1] will be always equal to 

0. 

3.4.7 DIMESIONING RATE 

The dimensioning rate is the maximum absolute value of the net exported energy and thus it will 

coincide with      ̅̅ ̅̅ ̅̅ ̅̅  or      ̅̅ ̅̅ ̅̅ ̅̅  

   
    [|  ( )|]

    
 Eq. 34 

The sketch in Figure 11 intends to show the main values expressed in the equations above. 

 

Figure 11.Example of load duration curve for normalized net exported electricity. Also the values of     ̅̅ ̅̅ ̅̅  
and     ̅̅ ̅̅ ̅ are shown in the graph (horizontal red and green dashed lines) together with the normalized 
value of Edes (+1 and -1). 

3.4.8 CONNECTION CAPACITY CREDIT 

The connection capacity credit, or power reduction potential originally defined in [23], can be 

defined as the percentage of grid connection capacity that could be saved compared to a 

reference case. It can be reformulated as 

     
  

     
 Eq. 35 
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Positive values of the index indicates a saving potential with respect to the reference case, and 

negative values means there is a need to increase the grid connection. 

On the other hand, taking the connection capacity as reference, it will be possible to identify the 

power reduction potential 

            Eq. 36 

On the contrary, if the reference case is the a building with no on-site generation, the following 

equation can be defined, to characterize the power reduction potential 

      (   )    
  

    ̅̅ ̅̅ ̅̅
 Eq. 37 

3.4.9 PEAKS ABOVE CERTAIN LIMIT 

The peaks above certain limit value indicate the part of analysed period that net export energy 

exceeds a certain barrier. The generic formulation is: 

       
∫   |  ( )|     
  
  

 

 
 Eq. 38 

Considering that the grid connection capacity should never be exceeded, in case that the aim is 

to limit the grid connection capacity the limit value should be the capacity that is aimed at. Other 

suggested value could be a certain value which is a turning point for which contracting or grid 

connection rules are to be fulfilled in relation to connection to the local grid distribution. 

3.5 OTHERS GRID INTERACTION INDICATORS 

3.5.1 NO GRID INTERATION PROBABILITY 

This index means the probability that the building is acting autonomously of the grid. In that 

case, the entire load is covered by the direct use of renewable energy or by the stored energy 

     
∫   |  ( )̅̅ ̅̅ ̅̅ ̅̅ |      
  
  

 

 
 Eq. 39 
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3.5.2 GRID INTERACTON INDEX 

The grid interaction index indicates the variability of the exchanged energy between the building 

and the grid within a year normalized on the maximum absolute value. 

         (
  ( )

    (|  ( )|)
) Eq. 40 

3.5.3 GRID CITIZENSHIP TOOL 

The aim of this tool is to qualitatively estimate the way that an interconnected component e.g. 

an energy producing building or a microgrid of such buildings, interacts with a greater power 

system, e.g. low-voltage power grid. It consists of the following factors: component ratio (CR) – 

describes the proportion between on-site generation and load; storage ratio (SR) – gives a 

qualitative indication of how well on-site generation is supported by on-site storage; 

intermittency ratio (IR) – indicates how reliable the component is at supplying energy. CR and 

SR factors are between -1 and 1, and IR varies from 0 to 1.  

   
         

         
 Eq. 41 

   
         

         
 Eq. 42 

   
               

         
 Eq. 43 

 

Figure 12.Qualitative tool for judging microgrid “grid citizenship”. From [26]. 
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3.5.4 EQUIVALENT HOURS OF STORAGE 

The equivalent hours of storage corresponds to the storage capacity expressed in hours. The 

physical capacity is the number of hours of storage multiplied by the power design load. This 

index should be explored as potential indicator of flexibility in buildings with storage system. 

     
    

    
 Eq. 44 
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4 CASE STUDIES 

4.1 MONITORED BUILDINGS 

The monitored data are available for six buildings, which represent different building topologies 

and renewable energy technologies. Table 3 gives an overview of seven case studies which are 

identified using the notation MB, for monitored buildings. Not all six buildings are fulfilling the 

zero energy standards. This is the case of MB5: two set of data are available for this multifamily 

house in Italy (2009 and 2011) being the data of year 2011 closer than the zero balance due to 

a reduction of loads and greater energy generated from the PV system. MB1 which is a house 

in Denmark and MB6 which is a refurbished building in Germany where a CHP system was 

installed are nearly ZEB. 

Table 3.Overwiew of the case studies: Monitored Buildings 

Case 
study 

Country 
Building 

type 
Technologies 

Energy 
infrastructure 

Resolution 
Time 

MB1 Denmark 
Single 
family 
house 

Photovoltaic / Heat pump 
+ Solar Thermal Electricity grid 1 hour 

MB2 Denmark 
Single 
family 
house 

Photovoltaic / Heat pump 
+ Solar Thermal Electricity grid 1 hour 

MB3 Denmark 
Single 
family 
house 

Photovoltaic + Solar 
Thermal / Heat pump Electricity grid 12 min 

MB4 Singapore Office Photovoltaic / Electric 
driven chillers Electricity grid 

1 hour 
(year) 

MB5 Italy Multi- family 
house 

Photovoltaic + Solar 
Thermal /Heat pump / 
Cooking system with 

methane 

Electricity grid & 
methane 1 hour 

MB6 Germany Multi- family 
house 

Gas driven CHP, 
additional condensing 
boiler, water storage, 

smart control 

Electricity & gas 
grid 5 min 

MB7 Sweden 
Single 
family 
house 

Photovoltaic + Solar 
thermal / Heat Pump Electricity grid 1 min 
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Figure 13. ZEB status exported v. delivered for the monitored buildings. Figures are in kW·h/m2 (Primary 
Energy) 
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4.1.1 MB1 AND MB2- FLAMINGO HOUSE - DENMARK 

The Flamingo house is a single family house in Denmark, with a gross floor area of 166 m² 

living space. The house was built in 2008 and is occupied by a family: two adults and two 

children. 

The annual space heating demand is calculated to be 18 kWh/m². The energy system is 

composed by 16 m2 of PV panels (2 kWp), 8 m² of thermal solar collectors for domestic hot 

water and space heating and a 5 kW ground coupled heat pump for both domestic hot water 

and space heating. More details may be found on: www.flamingohuset.dk (unfortunately only in 

Danish). 

Measurements are available for more than one year since February 2009, in 1-hour resolution. 

For the analysis in that report data corresponding to the year 2012 has been selected (MB1). 

The Flamingo house is not a Net ZEB. Then, a variation of the MB1 case has been generated 

artificially with the hypothesis of increasing the PV capacity by a factor of 4.5, which is identified 

as the MB2 case study. 

Table 4.Features of the MB1 and MB2 case studies. The Flamingo house 

 

Characteristic Value 

Installed PV capacity – MB1 2.0 kWp 

Installed PV capacity – MB2 10.0 kWp 

Installed PV area – MB1 16 m2 

Solar thermal area 8 m2 

Building area 166 m2 

Design connection capacity 10 kW3 

Thermal storage 
capacity/volume 300 litres 

Electrical storage capacity - 
 

                                                
 
3 25 A / 400 V = 10 kW 
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4.1.2 MB3 - ENERGY FLEX HOUSE - DENMARK 

EnergyFlexHouse® consists of two, two-storied, single-family houses in Denmark, with a total 

heated gross area of 216 m² each. The two buildings are in principle identical, but while the one 

building acts as a technical laboratory (Energy-FlexLab), the other is occupied by typical 

families who test the energy services (EnergyFlexFamily).  The houses are built so they are 

better than the Low E class 1 defined in the former Danish Building Code from 2008. The 

annual energy demand for space heating, ventilation, DHW and building-related electricity (not 

including energy for the household) amounts to less than 30 kWh/m². With the PV production, 

EnergyFlexFamily is energy neutral over the year including the demand for electricity of the 

household and an electric vehicle. The heating system consists of two heat pumps and a solar 

heating system. One of the heat pumps produces space heating via the floor heating system. 

The other heat pump is located in series with the passive heat exchanger of the ventilation 

system. This heat pump both preheats fresh air and DHW. The solar heating system preheats 

primarily DHW but may also deliver space heating. The efficiency of the passive heat exchanger 

is around 85%. 

The layout of the two houses is similar to the layout of many Danish single-family houses, 

although reversed concerning the use of the two floors. The buildings were put into operation 

during the autumn of 2009. Analyzed data corresponds to year 2010 which has been recorded 

with a 12 minutes resolution and do not include EV consumption.  

Table 5.Features of the MB3 case study. The EnergyFlex house. 

 

Characteristic Value 

Installed PV capacity 10.6 kWp 

Installed PV area 60 m2 

Solar thermal area 4.8 m2 

Building area 216 m2 

Design connection capacity 25.2 kW4 

Thermal storage 
capacity/volume 180 litres 

Electrical storage capacity - 

 

                                                
 
4 63 A / 400 V = 25.2 kW 
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4.1.3 MB4 -  ZEB @ BCA ACADEMY - SINGAPORE. 

ZEB @ BCA Academy is a non-residential-Educational building, with PV generation, located in 

Singapore. This building is operating since 2009, with a 4.500 m2 of net floor area and 2.018 m2 

of conditioning area. The ZEB project is intended as a functioning demonstration in the efficient 

use of energy in a building through both passive and active means for which a section of the 

existing BCA Academy has been converted for this purpose. Glazing, lightweight wall systems, 

shading devices, light shelves and green walls are incorporated into the west facade. Some 

rooms at the ground level have ducting of natural light for illumination. Light tubes are also 

installed to direct light into the interior of an office environment. The roofs are covered with solar 

PV panels to generate sufficient electrical energy to be self-sustaining, and certain part of the 

roof incorporates a ventilation stack to test the effect of convection air movement within a 

naturally ventilated environment. 

Table 6.Features of the MB4 case study – ZEB @ BCA Singapore 

 

Characteristic Value 

Installed PV capacity 190 kWp 

Installed PV area 1 540 m2 

Building area 4500 m2 

Design connection capacity 200 kW 

Electrical storage capacity - 
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4.1.4 MB5 - LEAF HOUSE - ITALY 

Leaf House is a technologically innovative muti-family house: its characteristics of cheapness, 

simplicity, efficiency and silence combine and integrate to create a house made for the 

environment. Leaf House is a clean energy laboratory, a place to be studied and visited, 

awakening and educating people to future. Leaf House is an example of saving and respect; it 

is a house composed of six flats, a real house where real people live. The average electric 

consumption per family in Ancona area corresponds to about 2100 kWh/year. With all the 

precautions used in the Leaf House, the electric consumption should not exceed the 1.500 

kWh/year. All consumptions are monitored and just after the first year of use it will be possible  

to have more reliable data. The house is provided with a geothermal heat pump and 

thetechnical systems are completed by a solar thermal collectors field and a photovolatic 

system. The electric consumptions including the air-conditioning and the heating system ones 

are covered by the photovoltaic plant integrated in the building cover. Real monitored data are 

available with 1 hour time resolution. Two set of data are analysed in this report corresponding 

to year 2009 and 2011. 

Table 7.Features of the MB5 case study – The Leaf house 

 

Characteristic Value 

Installed PV capacity 20.0 kWp 

Installed PV area 150 m2 

Solar thermal area 19 m2 

Building area 480 m2 

Design connection capacity 50 kW 

Thermal storage 
capacity/volume 

1000 litres 

Electrical Storage capacity - 
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4.1.5 MB6 – CHP WUPPERTAL- GERMANY 

A combined heat and power unit (CHP) with smart control was integrated in the heat supply of a 

typical multifamily building in Wuppertal, dated from early 1900 [31]. Buildings of this type are 

characteristic for many cities in Germany and form the appearance of old town quarters with 

complete perimeter block developments. Due to heritage for the historical facades, thermal 

insulation measures are limited and expensive. The original heat supply was a central natural 

gas boiler for space heating by radiators combined with electric heaters for DHW in the 

individual apartments. The measured gas consumptions achieved 145 kWh/m²·y before the 

modification of the heating system. With a research project supported by the foundation 

“Zukunft NRW” the building was equipped with a central CHP unit using natural gas and 

assisted by a condensing boiler for peak heat loads. The DHW water supply was combined with 

the central heating system to generate an additional, all year round heat load. To allow flexibility 

in operation times and cycles of the CHP a 2 m³ water tank acts as thermal buffer together with 

the very high thermal mass of the building structure. The experimental control system is based 

on a cost optimization function and a prediction algorithm for the thermal and electric load of the 

building. In practice the CHP unit was very flexible operated with respect to the power needs 

without neglecting coverage of the heat demand. Almost no use of the gas boiler was recorded 

(only Jan/Feb). The total gas consumption in 2011 was measured to 171 kWh/m²/y combined 

with 61 kWh/m² of electricity generation, of which 28 kWh/m²/y were supplied to the grid and the 

other 33 consumed in the households. 

Table 8.Features of the MB6 case study - CHP Wuppertal - Germany case study 

 

Characteristic Value 

Installed CHP power 5.5 kW 

Installed CHP heat 14.8 kWt
 

Installed gas burner capacity 14.0 kWt 

Building area (heated) 465 m2 

Number of occupants 12 persons 

Design connection capacity 80 kW5 

Thermal storage capacity/volume 2000 litres + 300 litres 
(DHW) 

Electrical storage capacity - 

                                                
 
5 80 kW is the reference value for the case of electric supply for DHW; 40 kW in  case that DHW is supplied by othar energy carriers / systems (CHP, 
gas burner, etc.). We take 80 kW as the reference value for the connection capacity. 
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4.1.6 MB7 – FINNÁNGEN HOUSE - SWEDEN 

The Finnängen house is the first renovated plus-energy house in Sweden. Finnängen was built 

in 1976 (Myresjöhus). The building has a wooden structure with brick decoration. Due to 

moisture risk in the cellar wall (concrete with wooden beams just inside) the owners decided to 

renovate the house in 2010 and add an extension. The walls were clad with air-tightness layer, 

external insulation and plaster. The roof tiles were exchanged to steel roof, photovoltaic and 

solar-thermal. The building envelope can now be classified as a passive-house according to the 

FEBY criteria (air-tightness 0.13 ACH, U-value roof 0,07 W/m2K wall 0.10 W/m2K, new ground 

0.12 W/m2K), except for the old house ground that was not refurbished. Space heating is 

supplied through hydronic floor heating and radiator system which is heated by solar thermal 

and horizontal ground source heat pump system. In 2011 the house used 7202 kWh (28.6 

kWh/m2) totally, out of which ~3000 kWh (12 kWh/m2) is used in the heat pump, ~1000 (4 

kWh/m2) is used for ventilation and heating circulation. The remaining ~3000 kWh (12 kWh/m2) 

is household electricity. The power supply through the photovoltaic system was 8356 kWh in 

2011, thus a surplus of 1154 kWh. Monitored data from the building has been recorded with 1 

minute time resolution and the analyzed data corresponds to the year 2011. 

Table 9.Features of the MB7 case study – The Finnängen house 

 

Characteristic Value 

Installed PV capacity 10.0 kWp 

Installed PV area 68 m2 

Solar thermal area 11.8 m2 

Building area 252 m2 

Design connection capacity 17 kW 

Thermal storage 
capacity/volume 750 litres 

Electrical Storage capacity - 
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4.2 SIMULATED BUILDINGS 

The simulated data are available for nine case studies, which represent different building 

topologies and renewable energy technologies, see Table 10, which are identified using the 

notation SB, for simulated buildings. They are designed to fulfil the zero energy standard. 

However, when looking on the annual balance between consumption and production or 

imported and feed-in energy, five buildings are plus energy houses, and three are nearly zero 

houses, see Figure 14 and Figure 15. 

Table 10.  Overview of the case studies: Simulated Buildings  

 
  

Case 
study 

Country Building type Technologies Energy 
infrastructure 

SB1 Denmark Single family 
house Photovoltaic / Heat pump Electricity grid 

SB2 Denmark Single family 
house Photovoltaic / Heat pump Electricity grid 

SB3 Germany/ 
Spain 

Single family 
house Photovoltaic Electricity grid 

SB4 Germany/ 
Spain 

Single family 
house Photovoltaic / battery Electricity grid 

SB5 Finland Single family 
house Micro wood pallets CHP Electricity grid 

SB6 Norway Multi-family house Photovoltaic / Heat pump Electricity grid 

SB7 Spain Multi-family house Photovoltaic Electricity grid 

SB8 Sweden Multi-family house Photovoltaic / Solar thermal 
collectors 

Electricity grid + 
District heating 

SB9 Sweden Multi-family house Photovoltaic /  Solar thermal 
collectors / battery 

Electricity  grid + 
District heating 
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Figure 14. ZEB status generation vs. load 

 
Figure 15. ZEB status exported vs. delivered energy 

4.2.1 SB1 AND SB2  - DENMARK  

The case study is a single family house located in Aarhus city in the northern part of Denmark. 

The building is 157m2 with the main facades towards north and south. The energy supply 

system consists of the PV models, placed on the roof, and a ground source heat pump. The 

building is designed to be connected to the local power grid distribution system. The 

characteristics of the building are presented in and Table 11. Moreover, the main difference 

between the two Danish case studies is COP of the heat pump. It varies during the year 

between 3 and 4 or 2 and 3, for the first and second case study, respectively.  
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Table 11. Characteristics of the SB1 and SB2 case study 

 

Characteristic Value 

Installed PV capacity 5,53 kWp 

Installed PV area 44,3 m2 

Design connection capacity n/a 

Electrical storage system - 

 

4.2.2 SB3 AND SB4 - GERMANY   

The case study is a “House for Europe”, the Bergische Universität Wuppertal house 

participating in the Solar Decathlon Europe competition in 2010. The building is 50 m2. It uses 

solar energy as the only energy source, and is equipped with technologies that permit maximum 

energy efficiency. PV generator systems on the roof and the south façade contribute, 

respectively, with about 6.4 and 3.8 kWp of installed capacity. The system is equipped with a 6 

kW·h battery, enabling different modes of operation (grid connected, battery-buffered and 

occasionally stand-alone). SB3 set of simulated data corresponds to a system without storage. 

SB4 data set corresponds to a system with battery, where the battery use is optimized to 

preferably match the electricity demand of the house with its own solar energy generation. 

Table 12. Features of the SB3 and SB4 case study 

 

Characteristic Value 

Installed PV capacity 10.2 kWp 

Installed PV area 70 m2 

Design load capacity 15 kW 

Design connection capacity 15 kW 

Storage capacity (full charge 
to discharge in 1h) 

2.91 kW 

Storage capacity 6 kWh 
Source Peter Keil 
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4.2.3 SB5 – FINLAND 

The house is located in Helsinki, Finland (60.2°N, 24.9°E). It is one-story house with floor area 

of 150 m2. The height of the first floor is 2.5 m, covered by a ventilated attic space that is not 

considered a heating space. The total glazing area is 21 m2, which corresponds to 16% of the 

heated floor area. External solar shading is considered as solar protection for all windows. 

Additionally, a window opening strategy is used by considering 0.375 m2 (1.5m height and 

0.25m width) of each window is airing and has a possibility to open to avoid overheating during 

summer. Therefore, there is no need for cooling systems. The indoor air temperature is set at 

21 ºC. All rooms in the house are heated by water radiators. The profiles of occupancy, DHW, 

lighting, and household appliances are compiled based on a detailed measured hourly profile of 

the RET project conducted by VTT in 2005 [32]. The house is simulated by Trnsys 17 software 

[33]. A 1.38 kWe wood pellet Stirling engine (WP-SE) is the standalone biomass-based micro 

CHP.  

Table 13. Characteristics of the SB5 case study 

 

Characteristic Value 

Installed CHP capacity 1,38 kW 

Design connection capacity n/a 

Electrical storage capacity - 

Thermal storage 
capacity/volume 

n/a 
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4.2.4 SB6 - NORWAY 

The case study considers a cluster of 200 similar detached single-family houses. The basic 

segment of the study is a theoretical single-family house having an area of 160 m2 and located 

in Oslo climate. The thermal properties of building envelop are adjusted to conform to the 

Norwegian passive house requirements. The heating needs of the house are fulfilled using a 

combination of an air-to-water heat pump and a solar thermal collector. Thermal collector 

covers most of the DHW needs during summer while heat pump covers the heating needs for 

both SH and DHW during the heating period. All the houses in the cluster are considered to 

have similar architectural characteristics and orientations, however, different number of 

occupants and appliance ownerships. The households’ composition is adapted to represent the 

Norwegian national average whereas photovoltaic is designed to meet the average electrical 

consumption of all the 200 households in the cluster. The energetic performance of the heating 

systems is computed by simulating all the houses using stochastic occupant internal gains. This 

leads to annual seasonal performance factor of the heating systems vary from 3 to 5.5 (taking 

solar collector into account) for the different houses. 

Table 14. Characteristics of the SB6 case study 

 

Characteristic Value 

Installed PV capacity 5,5 kWp 

Installed PV area 50 m2 

Design connection capacity n/a 

Thermal storage 
capacity/volume 

n/a 

Electrical storage capacity n/a 
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4.2.5 SB7 – SPAIN 

The case study consists in a typical multifamily house from the latest 60’s composed by 10 

individual flats with an average useful surface of 55 m2 per flat. The building is located in a high 

dense block typical in the metropolitan area of Barcelona. The case study considers retrofit 

options based on adding insulation to the facades and the roof, improving quality of the 

windows, both frame and glazing systems, and considering appropriate fixed and shading 

devices to prevent overheating. The building is considered to be provided by a solar thermal 

system to cover part of the DHW needs and a reversible heat pump for the heating and cooling 

loads. The roof is covered by a PV system of 37 kWp. 

Table 15. Characteristics of the SB7 case study 

                 

Characteristic Value 

Installed PV capacity 38 kWp 

Installed PV area 400 m2 

Installed solar thermal area 22 m2 

Design connection capacity 44 kW 

Thermal storage capacity/volume 1500 litres 

Electrical Storage capacity - 

 

4.2.6 SB8 AND SB9 - SWEDEN  

The Swedish building is designed as a terraced house with five dwellings. Each dwelling has a 

conditioned area of 138 m2. The building, situated in the city of Malmö in the south of Sweden, 

is designed to be connected to the electricity grid and district heating network.  A large roof and 

facade towards south-southwest are equipped with PV modules. On the top of the roof, which is 

horizontal, solar thermal collectors are mounted. A battery for storing electricity is installed, but 

the building also relies on the grid as a buffer, both for heat and electricity and will therefore 

export energy when the building’s system generates a surplus which cannot be stored and 

import energy when the building’s system does not produce the quantities of energy required. 

The energy performance of the building is investigated based on hourly data generated by 

simulations, using VIP Energy (http://www.strusoft.com/products/vip-energy). 

 

http://www.strusoft.com/products/vip-energy
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Table 16. Characteristics of theSB8 and SB9 case study 

 

Characteristic Value 

Installed PV capacity 34 / 37 kWp 

Installed PV area 265 m2 

Design load capacity, heating 16 kW 

Design load capacity, 
electricity 

5 kW 

Design connection capacity 37 / 44 kW 

Storage capacity(full charge to 
discharge in 1h) 

5 kW 

Storage capacity 25 kWh 

 

4.2.7 SIMULATED BUILDINGS: ADDITIONAL INFORMATION 

Additional information of the simulated buildings presented in this section can be found in the 

following literature references. Only information of non-referenced published case (SB7) is 

added. 

Case Additional information 

SB1 – SB2 [35] 

SB3 – SB4 [34] 

SB5 [32] 

SB6 [6] 

SB7 Uwall = 0.42 W/m2K; Uroof = 0.26 W/m2K; Uwindow = 2.48 W/m2K 

SB8 – SB9 - Sweden [21] 
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5 RESULTS AND DISCUSSION 

5.1 OVERVIEW OF ENERGY BALANCE 

An overview of the annual values for the main yearly quantities in the energy balances 

(generation, load and net exported) are presented in the following graphs, together with the 

monthly pattern of the net exported electricity.  

A statistical representation of each quantity is presented. In the case of yearly graphs, each 

notched box represents the percentile 10, 25 (or lower quartile), 50 (the median), 75 (or upper 

quartile) and percentile 90. Whiskers extending from the box represent the percentil 5% and 

95%, bottom and up respectively. Small cross represents percentile 1% and 99% and mininum 

and maximum values of the distribution are depicted by a solid square. Small square inside the 

each box indicates the mean value. (see example in Figure 16). 

 

Figure 16. Sketch of the statistical values represented in yearly graphs. 

In the case of the monthly graphs, for each box, the bottom horizontal line indicates percentil 

10%, then the lower quartile, the median (horizontal line), the upper quartile and the upper 

horizontal line represents the percentil 90%, respectively. Small box inside the each box 

indicates the mean value. Whiskers extending from the box represent the minimum and 

maximum values of the distribution. 
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Figure 17. Case study MB1. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

  

Figure 18. Case study MB2. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

  

Figure 19. Case study MB3. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 
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Figure 20. Case study MB4. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

  

Figure 21. Case study MB5, year 2009. Generation, load and net exported energy values (left) and 
monthly generation of the net exported electricity (right) in kW. 

 

Figure 22. Case study MB5, year 2011. Generation, load and net exported energy values (left) and 
monthly generation of the net exported electricity (right) in kW. 



 IEA Joint Project SHC Task 40 / ECBCS Annex 52 
Load Match and Grid Interaction in NZEB 

Page 58 of 102 

 

  

Figure 23. Case study MB6. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

 

Figure 24. Case study MB7. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

  

Figure 25. Case study SB1. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 
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Figure 26. Case study SB2. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

  

Figure 27. Case study SB3. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

  

Figure 28. Case study SB4. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 
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Figure 29. Case study SB5. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

  

Figure 30. Case study SB6. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

  

Figure 31. Case study SB7. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 



 IEA Joint Project SHC Task 40 / ECBCS Annex 52 
Load Match and Grid Interaction in NZEB 

Page 61 of 102 

 

  

Figure 32. Case study SB8. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 

 

Figure 33. Case study SB9. Generation, load and net exported energy values (left) and monthly 
generation of the net exported electricity (right) in kW. 
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The graphs presented above give a clear picture of the main magnitudes (generation, load and 

net exported energy) and also the seasonal differences between months. All buildings which 

base their strategy on using PV, as method for compensating the energy balance, export more 

energy in summer months, except case MB4 which shows only slight differences between 

months due to the climate. Buildings equipped with CHP (MB6 and SB5) shows a complete 

different trend, exporting more energy in winter times. The graphs help to appreciate the 

differences between peak values (maximum and minimum) with percentiles. In most of the 

cases differences between peak net exported power and percentil 90% is significant and also 

for negative values (delivered energy). Usually trends of the peak values follows similar 

seasonal trends as the balance, although in the case of monitored data monthly variations of 

peak values are minor and more stochastic distributed. One possible explanation could be the 

influence of stochastic load in real data while daily profiles with minor or even none seasonal 

variation for different months are used in the simulation programs. 
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5.2 LOAD MATCHING FACTORS 

As presented in chapter 3 the load matching (LM) factors describe the degree of matching of 

on-site energy generation to local energy demand, and thus they can also indicate the building 

expected interaction with the energy infrastructure, i.e. the amount of imported and exported 

energy. In this section, the results of these factors for both monitored and simulated test cases 

are presented and discussed. In Table 17 and Table 18, the annual values for the load cover 

factor (     ) and the supply cover factor (       ) are presented together with the loss of load 

probability (     ), for monitored and simulated case studies. 

Mean hourly values of load and supply cover factors averaged over four months, which are 

chosen to represent different seasons, are shown for each case study from Figure 34 to Figure 

50. Lack of values for         indicates periods with no on-site generation, correspondingly in 

these periods       equals zero. 

Table 17. Annual cover factors and loss of load probability for monitored case studies. 

 MB1 MB2 MB3 MB4 MB52009 MB52011 MB6 MB7 

      0.140 0.239 0.206 0.582 0.306 0.326 0.585 0.179 

        0.588 0.222 0.216 0.575 0.519 0.420 0.427 0.236 

      0.829 0.701 0.717 0.734 0.742 0.703 0.522 0.715 

Table 18. Annual cover factors and loss of load probability for simulated case studies. 

 SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 

      0.309 0.296 0.422 0.872 0.376 0.246 0.358 0.241 0.476 

        0.295 0.297 0.102 0.217 0.585 0.246 0.453 0.205 0.358 

      0.716 0.717 0.576 0.205 0.735 0.728 0.694 0.827 0.863 
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Figure 34. Case study MB1. Mean daily load cover factor (left) and supply cover factor (right) for 
selected four months. 

 

Figure 35. Case study MB2. Mean daily load cover factor (left) and supply cover factor (right) for 
selected four months. 

 

Figure 36. Case study MB3. Mean daily load cover factor (left) and supply cover factor (right) for 
selected four months. 
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Figure 37. Case study MB4. Mean daily load cover factor (left) and supply cover factor (right) for 
selected four months. 

 

Figure 38. Case study MB5. Year 2009. Mean daily load cover factor (left) and supply cover factor (right) 
for selected four months. 

 

Figure 39. Case study MB5. Year 2011. Mean daily load cover factor (left) and supply cover factor (right) 
for selected four months. 
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Figure 40. Case study MB6. Mean daily load cover factor (left) and supply cover factor (right) for 
selected four months. 

 

Figure 41. Case study MB7. Mean daily load cover factor (left) and supply cover factor (right) for 
selected four months. 

 
Figure 42. Case study SB1. Mean daily load cover factor (left) and supply cover factor (right) for selected 
four months. 
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Figure 43. Case study SB2. Mean daily load cover factor (left) and supply cover factor (right) for selected 
four months. 

 
Figure 44. Case study SB3. Mean daily load cover factor (left) and supply cover factor (right) for selected 
four months. 

 
Figure 45. Case study SB4. Mean daily load cover factor (left) and supply cover factor (right) for selected 
four months. 
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Figure 46. Case study SB5. Mean daily load cover factor (left) and supply cover factor (right) for selected 
four months. 

 
Figure 47. Case study SB6. Mean daily load cover factor (left) and supply cover factor (right) for selected 
four months. 

 
Figure 48. Case study SB7. Mean daily load cover factor (left) and supply cover factor (right) for selected 
four months. 
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Figure 49. Case study SB8. Mean daily load cover factor (left) and supply cover factor (right) for selected 
four months. 

 
Figure 50. Case study SB9. Mean daily load cover factor (left) and supply cover factor (right) for selected 
four months. 

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hour of day

M
e
a
n
 o

f 
L
o
a
d
 c

o
v
e
r 

fa
c
to

r

5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hour of day

M
e
a
n
 o

f 
S

u
p
p
ly

 c
o
v
e
r 

fa
c
to

r

 

 

Jan

Apr

Jul

Oct

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hour of day

M
e
a
n
 o

f 
L
o
a
d
 c

o
v
e
r 

fa
c
to

r

5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hour of day

M
e
a
n
 o

f 
S

u
p
p
ly

 c
o
v
e
r 

fa
c
to

r

 

 

Jan

Apr

Jul

Oct



 IEA Joint Project SHC Task 40 / ECBCS Annex 52 
Load Match and Grid Interaction in NZEB 

Page 70 of 102 

 

The SB1, SB2, SB6, MB2, MB3 and MB7 represent so called “typical” zero energy residential 

building, i.e. PV installation in combination with heat pump, located in heating dominated 

climate. For these case studies there is a significant seasonal variation of       and        , e.g. 

for SB6 at 2 p.m.       varies between 0.38 and 0.99, and         ranges from 0.18 to 0.89. It is 

a result of big azimuth and altitude angle variations during the year. In consequence of it, during 

summer months the electricity load during the day is almost fully covered by the on-site 

generation, and still a significant party of the generated electricity, at noon it may even reach 

90%, is exported to the grid (see for example, Figure 36 and Figure 42, right). For the other 

seasons,       tends to decrease (and         increases) reaching minimum in winter period, 

when the number of hours with on-site generation decreases. In the winter season building will 

act as consumer, but during hours of maximum solar radiation around 45% and 60% of load can 

be self-generated, or sometimes electricity may be exported to the grid (        = 0.73 - SB1 

and         = 0.84 - SB6). The annual cover factors       and         shown in Table 17 and 

Table 18 vary between 0.25-0.31 and 0.25-0.3, respectively. It is similar to the results presented 

by Baetens et al. [5], where        equals 0.32 ± 0.04 and          is 0.26 ± 0.03 for a zero 

energy residential building located in Belgium.  

Differences between a Net ZEB and a building which is not reaching the zero balance can be 

appreciated comparing the results for the cases MB1 and MB2: in the case of MB1, values of 

the         are significantly higher than in MB2 (0.59 vs. 0.22), meaning that the self-

consumption is higher due to undersized on-site generation compared to MB2. 

In case of the SB7 and MB5, which has also PV panels as used as RES but they are located in 

heating and cooling dominated climate (Spain and Italy, respectively), the       has more 

smooth distribution through the whole year, with a similar daily pattern. The only major 

difference is in the case of SB7 where         at 14-15 o’clock increases due to midday 

activities in Spain at home. The annual cover factors       and         shown in Table 17 and 

Table 18 for cases SB7 and MB5 (year 2011) vary between 0.33-0.36 and 0.42-0.45, 

respectively. 

In case of a cooling dominated climate and for an office building, seasonal variations of the 

cover factors are not significant as it can be appreciated in the case MB4 (see also Figure 37, 

right), being the values for       and         0.582 and 0.575, respectively. 
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The SB3 is also located in Spain and it is a very small single family house, where annual on-site 

electricity generation is four times higher than the annual load. Therefore, for the whole year 

during the daytime       equals 1 but it only constitutes to around 10-20% of the generated 

electricity. When comparing SB3 with SB4, we can notice the influence of battery on daily 

patterns of       and         factors. By introducing battery, the building becomes almost fully 

self-sufficient (      = 1). Only during winter nights and morning hours in spring and fall, it may 

happen that on-site electricity storage is not enough to cover the load (      < 1), and thus grid 

support is needed. In consequence of using on-site battery, on-site generation can be also used 

during nights (        = 1). Moreover, there is fewer hours when SB4 acts as producer (0 < 

        < 1), because the first hour of on-site generation is used for recharging the empty 

batteries after night discharge. The annual cover factors       and          in case of SB4 are 

higher with a factor 2 compared to SB3, see Table 18. 

The influence of on-site battery on       and          is also visible when comparing SB8 and 

SB9. For this ZEB, however, the presence of electricity storage is mostly visible in spring and 

summer time, where the building becomes almost fully self-sufficient. By having battery, in the 

fall and winter more electricity load is covered by on-site generation. Hence, both the annual 

value of                    increases by factor 2 and 1.7, respectively.  

The MB6 and SB5 are the only case studies with micro CHP as on-site electricity generation 

where the CHP runs with heat as priority. This operation strategy is clearly reflected in the load 

cover factor graph, where the       is highest in winter and lowest in summer (opposite to the 

case studies with PV panels). For the SB5 case study       never reaches 1, which means that 

the building needs continuous assistance of electricity from the power grid and for MB6 case 

study       equals 1 only in some hours in the morning and the evening in winter (January in the 

graph, see Figure 40, left). Moreover, in this case the cover factors are influenced by electricity 

load profile as well as the heat load profile and its control strategy. For example in case SB5, in 

July between 3 a.m. and 13 a.m.       equals zero, which may be a reason that building does 

not have any space heating demand and the needs of domestic hot water can be met by 

storage tank, and thus micro CHP is in the off-mode. Also, the         for October, January, and 

April in both cases increases with the morning and afternoon electricity and hot water 

consumption peak. Furthermore, there is not such significant seasonal variation of the supply 

cover factor. The annual supply cover factor         equals 0.585 (SB5) and 0.427 (MB6) and 

are the highest for all case studies, with the exception of MB4 (a complete different climate) and 

MB1 which is not actually a Net ZEB 
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The losses-of-load-probability (LOLPb) factor indicates how often the on-site supply does not 

cover the on-site load. Table 18 presents the LOLPb factors for all nine simulated case studies 

and Table 17 for the monitored buildings. For the cases with PV and heat pump, SB1, SB2, 

SB6, SB7, MB1, MB3, MB5, and MB7 and with micro CHP – SB5 around 70% of time the load 

is not covered by on-site generation and thus the electricity must be delivered for the grid. 

However, this index does not provide any information about the amount of delivered electricity. 

When comparing SB3 and SB4 we can see that having on-site battery decreases the time when 

the building must import electricity from grid, in this particular case studies it decreases by a 

factor of 2.8.  Using the LOLP factor, designer can evaluate various load control strategies. For 

example, looking at case study SB3 and SB4 we can conclude that having on-site battery for 

that case increases the time of local generation covering the local demand by 37%. 
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5.3 GRID INTERACTION FACTORS 

5.3.1 GRID INTERACTION FACTORS RELATED TO GRID CONNECTION CAPACITY (EDES) 

This chapter presents the results of analysis of grid interaction factors based on simulated data 

for nine case studies and monitored data for seven case studies described in chapter 4. In the 

first part the factors related to grid connection capacity are discussed. Unfortunately, in the 

common practice the grid connection capacity is an unknown value during the early design 

phase. Often, this value is supplied when the building shape, form, energy performance 

calculations are finished and only minor adjustment to the building design can be made. This 

issue is also reflected in the analysed case studies, where only in 3 out of 6 simulated buildings 

the connection capacity is given already during simulation part, i.e. building from Germany - 

SB3 and 4, Spain - SB7, and Sweden - SB8 and 9. 

From Figure 51 to Figure 59 the load duration curve for the generation, load and net exported 

energy are represented for each test case, using non-normalized values. From Figure 60 to 

Figure 66 the duration curve of net electricity export normalized with the designed grid 

connection capacity is depicted. Also the values of     ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅  are shown in the graphs 

(horizontal red and green dashed lines) together with the normalized value of Edes (+1 and -1). 

In all the case studies, the electricity generated on site is by photovoltaic panels, except for the 

case MB6 and SB5. The SB3, SB4, SB8, SB9, MB1, MB2, MB3, MB6 and MB7 are buildings 

located in the heating dominated climates, where the seasonal mismatch between load and on-

site generation is significant. Hence the delivered electricity has very low values compared to 

high summer export peaks and it spatially uses only around 10% of the available grid 

connection capacity. For SB8 and SB9 the exported electricity reaches almost the maximum of 

the allowed grid connection capacity, as for the case MB2 which in fact is a theoretical case 

based in MB1. The SB7 case study is located in Spain, and it represents a building with more 

even load and generation distribution through the whole year, which results in similar delivered 

and exported power peaks, 0.50 and 0.57, respectively. By comparing SB3 with SB4 it can be 

noticed that the presence of on-site battery does not decrease the high peaks of exported 

power, but it mostly reduces time when building acts as consumer of electricity, see Table 19. 

Shape of generation load profile in cases MB6 and SB5 clearly shows the differences between 

CHP and PV generation profiles, showing the modularity in the CHP power generation. 

 

 



 IEA Joint Project SHC Task 40 / ECBCS Annex 52 
Load Match and Grid Interaction in NZEB 

Page 74 of 102 

 

 

Figure 51. Duration curve for generation, load and net exported electricity. Case studies MB1 (left) and 
MB2 (right). 

 

Figure 52. Duration curve for generation, load and net exported electricity. Case studies MB3 (left) and 
MB4 (right). 

 

Figure 53. Duration curve for generation, load and net exported electricity. Case studies MB5_year 2009 

(left) and MB5_year 2011 (right). 
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Figure 54. Duration curve for generation, load and net exported electricity. Case studies MB6 (left) and 
MB7 (right). 

 

Figure 55. Duration curve for generation, load and net exported electricity. Case studies SB1 (left) and 
SB2 (right). 

 

Figure 56. Duration curve for generation, load and net exported electricity. Case studies SB3 (left) and 
SB4 (right). 
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Figure 57. Duration curve for generation, load and net exported electricity. Case studies SB5 (left) and 
SB6 (right). 

 

Figure 58. Duration curve for generation, load and net exported electricity. Case studies SB7 (left) and 
SB8 (right). 

 

Figure 59. Duration curve for generation, load and net exported electricity. Case studies SB9 (left) 
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Figure 60. Normalized net exported electricity duration curve. Case studies MB1 (left) and MB2 (right). 
Edes=10 kW 

 

Figure 61.. Normalized net exported electricity duration curve. Case studies MB3 (left; Edes=25 kW) and 
MB4 (right; Edes=200 kW). 

 

Figure 62.  Normalized net exported electricity duration curve. Case studies MB5_year 2009 (left) and 
MB5_year 2011 (right). Edes=50 kW 
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Figure 63. Normalized net exported electricity duration curve. Case studies MB6 (left; Edes=80 kW) and 
MB7(right; Edes=17 kW). 

 
Figure 64. Normalized net exported electricity duration curve. Case studies SB3 (left) and SB4(right). 
Edes=15 kW 

 
Figure 65. Normalized net exported electricity duration curve. Case studies SB7 (left). Edes=44 kW 
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Figure 66. Normalized net exported electricity duration curve. Case studies SB8 (left; Edes=37 kW) and 
SB9 (right; Edes=44 kW). 

Table 19. Percentage of time when electricity is delivered or exported and no integration probability for 
the monitored case studies 

 MB1 MB2 MB3 MB4 MB52009 MB52011 MB6 MB7 

     [%] 0.4 0.3 0.0 0.5 0.2 0.0 0.4 8.6 

Time delivered [%] 82.7 70.0 71.7 73.4 74.2 70.3 52.2 71.5 

Time export [%] 16.9 29.7 28.3 26.1 25.6 29.7 47.4 19.9 

Table 20. Percentage of time when electricity is delivered or exported and no integration probability for 
the simulated case studies 

 SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 

     [%] 0.1 0 0 48.6 0 0.1 0 0 37.5 

Time delivered [%] 71.6 71.7 57.6 10.6 73.5 72.7 69.4 82.7 48.1 

Time export [%] 28.3 28.3 42.4 40.8 26.5 27.2 30.6 17.3 14.4 
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Representation of net exported energy in coloured contour graphs gives significant information 

of when during the whole year the building is exporting or importing energy, depending of the 

type of building, the generation system and its management system. X-axis in the graphs 

represents the hours of the day (1-24) and the y-axis is the days of the year (1-365). The levels 

of colours in the graph represent the amount of power imported from the grid (negative values) 

and exported electricity (positive values). From Figure 67 to Figure 71, coloured selected test 

cases are represented. Figure 67 is a typical case of individual house equipped with PV in a 

heating dominated climate (Denmark), where it clearly can be appreciated that exporting 

electricity is happening more in summer and midday hours. Figure 68 corresponds to the case 

study MB4 (office building in Singapore) where almost no difference in the values can be 

appreciated in non-occupied hours. A complete different profile of net exported energy can be 

appreciated in Figure 69 which corresponds to the case study MB6 (CHP system). In that case, 

exporting energy from the building to the grid occurs when CHP is running due to the building 

heating needs (i.e., mostly in winter and the first hours in the morning). Figure 70 and Figure 71 

corresponds to the same building positive energy building without and with battery, respectively 

case studies SV3 and SB4. It could be appreciated that the use of the battery almost eliminates 

the need to import energy from the grid between 19 h and 24 h. 

 

Figure 67. Coloured contour graph of net exported energy. Units are in kW. Case study MB3 
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Figure 68. Coloured contour graph of net exported energy. Units are in kW. Case study MB4 

 

 

Figure 69. Coloured contour graph of net exported energy. Units are in kW. Case study MB6  
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Figure 70. Coloured contour graph of net exported energy. Units are in kW. Case study SB3 

 

Figure 71. Coloured contour graph of net exported energy. Units are in kW. Case study SB4 
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When looking on the capacity factor       it can be concluded that for the simulated cases 

analysed only around 10% of the available connection capacity is being used. However, the 

maximum net export at a given time relative to the designed power connection (defined as 

dimensioning rate, DR), is varying between 0.47 and 0.99, see Table 22. For the monitored 

cases MB3-MB7, which are real Net ZEB or nearly Net ZEB, the capacity factor is less than 

10% and dimensioning rate is between 0.30 and 0.40, see Table 21. The only exception is MB6 

which has a DR value of 0.088, but is also the case which are far to have a zero balance. In 

general, in the case of individual buildings enough connection capacity is available, and the 

capacity credit,       , is over 60%. The same trend is observed with MB2 but in that case, as 

the connection capacity is the same as in MB1 (which is not a Net ZEB) and lower than MB3 

(which is a similar house in the same country), the capacity credit is less than 30%. On the 

other hand, when the Net ZEB is compared to the same building acting as only energy 

consumer, the capacity credit,       (   ), is negative, and the monitored Net ZEBs require 

between 27% and 55% higher connection capacity. This is also in line with the findings of the 

GM factors in the following.  

Table 21. Capacity factor, dimensioning rate and connection capacity credit for the monitored case 
studies 

 MB1 MB2 MB3 MB4 MB52009 MB52011 MB6 MB7 

      0.091 0.151 0.069 0.094 0.097 0.088 0.026 0.066 

   0.526 0.725 0.345 0.615 0.318 0.302 0.088 0.404 

       0.474 0.276 0.655 0.385 0.682 0.698 0.912 0.596 

      (   ) 0.000 -0.377 -0.388 -0.538 -0.359 -0.479 0.089 -0.271 

Table 22.  Capacity factor, dimensioning rate and connection capacity credit for the simulated case 
studies 

 SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 

      - - 0.10 0.07 - - 0.12 0.11 0.10 

   - - 0.49 0.48 - - 0.57 0.99 0.98 

         0.509 0.522   0.434 0.013 0.020 

      (   )   -3.863 -3.738   -0.004 -7.586 -9.143 
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As mentioned in chapter 2, very useful information for the grid planner would be to estimate how 

much higher the generation power peak is compared to the load power peak. This information is 

given by the generation multiple (GM) presented in chapter 3 and Table 23 and Table 24. The 

GM is calculated for generation and load peak power - GM(g/l) as well as exported and delivered 

peak power - GM(e/d) . By having these two factors for a particular building, it is possible to verify 

the efficiency of various operation strategies or design options, made possible through Demand 

Side Management (DSM).  

Among the analysed nine simulated case studies, eight have PV installation and one - SB5 a 

micro CHP. For the simulated buildings with PV the GM(g/l) is above one and varies between 

1.32 and 10.75, which means that peak generation is higher than peak load regardless of 

fulfilling the zero standard, or is above or below the zero limits. In the case of monitored test 

cases, values of GM are above 1.0 but below 2.0 for all the cases using PV (except for MB1 

which is not really a ZEB and MB6 which is the case with a CHP system and far to be a ZEB, 

too). The coincidence of generation and load results in lower GM(e/d) factors for all the cases, 

however, without any significant reduction when implementing battery – see GM(e/d) for SB3 and 

SB4. As in case of SB5 the micro CHP runs with heat as priority, and the GM(g/l) and GM(e/d) are 

lower than unity, as GM(e/d) for MB6 is. It is convenient to consider in that analysis that gas 

consumption occurs simultaneously to exchange with the power grid in the cases of CHP 

systems and that effect is not caught by the proposed grid interaction factors. 

Lack of the grid connection capacity during the design phase of a building hampers calculation 

of all the above described grid interaction factors. However, some of the information, e.g. GM 

factors (Table 23 and Table 24) and time when building acts as consumer and as producer 

(Table 19 and Table 20), can be obtained from duration curves of net export, load and 

generation, seen from Figure 60 to Figure 66. 

Table 23. Generation multiple based on generation/load peak power or exported/delivered peak power for 
simulated case studies 

 SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 

GM(g/l) 3.39 2.79 5.04 5.04 0.41 2.42 1.32 9.13 10.75 

GM(e/d) 3.12 2.57 4.86 4.74 0.31 2.30 0.89 8.59 10.14 
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Table 24. Generation multiple based on generation/load peak power or exported/delivered peak power for 
monitored case studies 

 MB1 MB2 MB3 MB4 MB52009 MB52011 MB6 MB7 

GM(g/l) 0.612 1.976 1.449 1.688 1.581 1.716 1.166 1.364 

GM(e/d) 0.268 1.377 1.398 1.557 1.377 1.479 0.767 1.370 
 

 

 

 

Table 25 and Table 26 shows statistical analysis of different GM ratios and design ranges using 

different percentile values of net exported energy. Figure 72 and Figure 73 (monitored and 

simulated buildings, respectively) represents the different values of GM ratio using different 

approach of percentiles, meaning that reduction of the higher percentile (99, 95, 90, etc.) means 

curtailment on the grid export and increase of the lower percentile (1, 5, 10, etc.) means peak 

shaving and less power needed from the grid. Figure 74 and Figure 75 also represents different 

GM but with the hypothesis of reduction of higher percentile but maintain lower percentile equal 

to 0 (that means no peak shaving in the load side). From Figure 72 and Figure 74 where the 

results from monitored buildings are presented, trends are very similar for all the buildings which 

are ZEB or nearly ZEB using PV as the generation system, independently of the climate and the 

type of building. In case that no peak shaving in the load side occurs, a curtailment of 5% time 

when exporting power is highest means that GM is below 1.0 in all the cases. By the other 

hand, if similar “effort” in reducing peak values is done both when exporting energy as when 

energy is demanded from the grid, GM increases respect GM100/0, as the reduction in the 

delivered side is higher, at least for reductions until 5%. The monitored cases that show 

different trends are MB1 and MB6. MB1 is a building with 4.5 times less PV than the PV needed 

to have a zero balance and thus hardy can be comparable with the rest. MB6 is a building which 

is also far to have a zero balance and it is equipped with CHP and does not have any PV 

system. Curtailment in the exporting power reduces GM from 0.77 to 0.58 for the test case 

MB6. More dispersion is observed when analysing the simulated cases due to variety of cases 

with positive buildings and buildings with PV and CHP. However, the trend that a significant 

reduction of the GM index when considering reduction of the highest exporting peaks is also 

confirmed for all the simulated cases which are ZEB or positive buildings using PV. 
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Table 25. Statistical values and ranges of normalized net exported energy values for monitored case 
studies. GM corresponds to GM(e/d) 

 
MB1 MB2 MB3 MB4 MB52009 MB52011 MB6 MB7 

Edes 10.0 10.0 25.2 200.0 50.0 50.0 80.0 17.0 

    ̅̅ ̅̅ ̅ 0.526 0.526 0.249 0.400 0.234 0.204 0.097 0.318 

    ̅̅ ̅̅ ̅̅  0.322 1.040 0.361 0.675 0.370 0.350 0.113 0.434 

     ̅̅ ̅̅ ̅̅ ̅ -0.526 -0.526 -0.247 -0.395 -0.231 -0.204 -0.088 -0.295 

     ̅̅ ̅̅ ̅̅ ̅̅  0.141 0.7245 0.345 0.615 0.318 0.302 0.067 0.404 

           0.268 1.377 1.398 1.557 1.377 1.479 0.767 1.370 

          0.377 2.174 1.845 1.979 1.349 1.699 1.237 1.866 

          0.299 1.990 1.779 1.765 1.164 1.602 1.697 1.645 

           0.173 1.539 1.500 1.829 0.914 1.402 2.048 1.006 

           0.177 0.451 0.213 0.273 0.069 0.402 2.722 0.000 

          0.667 1.251 0.593 1.010 0.549 0.506 0.155 0.699 

         0.420 0.940 0.468 0.715 0.411 0.389 0.109 0.538 

         0.330 0.751 0.346 0.470 0.329 0.320 0.089 0.362 

          0.271 0.582 0.249 0.309 0.268 0.269 0.076 0.224 

          0.102 0.155 0.069 0.070 0.120 0.125 0.050 0.063 

         

          0.219 1.223 1.228 1.203 1.022 1.199 0.684 1.187 

          0.144 0.950 0.897 0.759 0.766 0.966 0.637 0.764 

          0.076 0.670 0.605 0.506 0.554 0.770 0.583 0.381 
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Table 26. Statistical values and ranges of normalized net exported energy values for simulated case 
studies 

 

SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 

Edes - - 15.000 15.000 - - 44.000 37.000 44.000 

    ̅̅ ̅̅ ̅   0.101 0.101   0.564 0.115 0.097 

    ̅̅ ̅̅ ̅̅    0.509 0.509   0.745 1.049 1.039 

     ̅̅ ̅̅ ̅̅ ̅̅    -0.100 -0.100   -0.566 -0.114 -0.096 

     ̅̅ ̅̅ ̅̅ ̅̅    0.490 0.478   0.502 0.986 0.980 

           3.124 2.568 4.863 4.738 0.315 2.298 0.888 8.586 10.143 

          3.369 3.081 6.695 6.953 0.416 2.658 1.041 7.346 8.687 

          2.825 2.576 9.214 11.103 0.719 2.551 1.144 5.179 5.930 

           2.083 1.893 8.212 8.5 ·103 0.844 1.966 1.092 2.861 0.947 

           0.292 0.534 5.638 24.2 103 0.239 0.161 0.396 0.382 0.000 

            0.592 0.579   1.069 1.101 1.077 

           0.502 0.490   0.762 0.959 0.936 

           0.424 0.402   0.550 0.710 0.670 

            0.361 0.294   0.400 0.444 0.145 

            0.175 0.108   0.141 0.055 0.066 

          

          2.600 2.130 4.327 4.240 0.313 1.749 0.686 7.346 8.687 

          1.834 1.510 3.789 3.657 0.311 1.321 0.518 5.179 5.930 

          1.207 0.991 3.189 2.915 0.258 0.853 0.369 2.861 0.732 
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Figure 72. Variation of GM for each test monitored case 

 

Figure 73. Variation of GM for each test simulated cases 
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Figure 74. Variation of GM relative to percentile 0% for each test monitored case 

 

Figure 75. Variation of GM relative to percentile 0% for each test simulated cases 
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As it was pointed in section 2, one of the interest on deducing relevant grid interaction indicators 

is the study how a cluster of Net ZEB can influence the design of distribution grids. Then a 

simple hypothesis has been done using the data of single monitored buildings. The hypotheses 

are that both the connection capacity and the minimum value of net exported energy follow 

Velander method and the peak value of net exported energy is proportional to the number of 

buildings within the cluster. Results in the graphs (Figure 76 and Figure 77) shows that for a 

higher number of Net ZEBs in the cluster of buildings (> 100) the GM ratio has values between 

2.5 and 3.0. Dimension Rate graph in Figure 77 shows a significant increase of this ratio, but in 

the majority of cases analysed at least 20% of the connection capacity on the area is still 

available. We can observe some different curves for cases MB1, MB2 and MB6. As it is stated 

before, MB1 is far from being a ZEB considering the high energy consumption in the building. 

For this case, it can be observed that Dimension Rate remains constant as peak generation 

values are low compared to peak loads, which also make the values of GM below zero. MB2 is 

a ZEB where the behaviour of GM is similar to the other ZEBs (Figure 76). As DR relates the 

peak values with the connection capacity, the base case for MB2 has a high DR with a limited 

connection capacity (which is the same of MB1 with a PV system 4.5 times larger). Case MB6 

follows a similar trend but stabilizing at different values (GM  1.5; DR  0.13). 

Both in the cases of analysing the buildings individually or in a context of a cluster of buildings, 

the indexes Generation Multiple (GM), ranges of net exported values (A) and Dimensioning 

Rate (DR) are appropriate indexes to know the relationship between Exported/Delivered peak 

values and between the building and the grid through the additional information of the grid 

capacity. As flexibility needs a comparison between several options compared to a reference 

case. The referred indexes could be used to compare different options or to compare potential 

of a building using simple statistical values as the percentiles are. 
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Figure 76. Generation Multiple (GM) for a cluster of Net ZEB buildings 

  

Figure 77. Dimension Rate (DR) for a cluster of Net ZEB buildings 

5.3.2 PEAKS ABOVE LIMIT / BARRIER 

The “peaks above limit” index indicates the part of analysed period that exchanged energy 

exceeds a certain barrier. This limit should be given by the utility grids. Unfortunately, for most 

of the case studies the limit is unknown, see Table 28. Percentage of time of peaks above limit, 

and for the ones where the limit is given, we can deduce that the presence of battery does not 

change the results significantly. However, we don’t know if and how the value of peaks has 

changed, which an important input is for grid designers. 
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Table 27. Percentage of time of peaks above limit for monitored case studies 

 MB1 MB2 MB3 MB4 MB52009 MB52011 MB6 MB7 

Peaks above limit [%] 0 5 7 0 0 0 0 3 

Limit [kW] 5 5 5 150 30 30 40 5 

Table 28. Percentage of time of peaks above limit for simulated case studies 

Case study SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 

Peaks above limit [%] - - 8.9 7.6 - - - 5.9 6.6 

Limit [kW] - - 5 5 - - - 20 20 
 

When using this indicator, only the percentage of time is known without any indication of the 

height of peaks. Similar as evaluating the percentage of time when IAQ is within the limits of a 

particular class, a possible solution may be a scale of limits with a maximum barrier of grid 

connection capacity. By doing so, designer can quickly and easily have an indication of how 

well building design matches the requirements of the grid.   

5.3.3 GRID INTERACTION INDEX 

The grid interaction index indicates the variability of the exchanged energy between the building 

and the grid within a year normalized on the maximum absolute value. 

For the investigated case studies with simulated hourly datasets, the grid interaction index 

varies between 0.2 and 0.3 for simulated case studies, see Table 29, and between 0.15 and 

0.21 for the monitored case studies. However, with any additional information about the import 

and export of energy or characterizations of the local grid, drawing any conclusions about the 

building-grid interaction is rather difficult. The values do not change significantly for different 

renewable energy technologies, i.e. PV and micro CHP, or systems with or without battery.  

Table 29. Grid interaction index for simulated case studies 

Case study SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 

      0.242 0.247 0.288 0.264 0.221 0.232 0.272 0.218 0.196 

Table 30. Grid interaction index for monitored case studies 

Case study MB1 MB2 MB3 MB4 MB52009 MB52011 MB6 MB7 

      0.155 0.2082 0.198 0.156 0.156 0.172 0.191 0.186 
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5.3.4 GRID CITIZENSHIP TOOL 

The aim of this tool is to qualitatively estimate the way that an interconnected component e.g. 

an energy producing building or a microgrid of such buildings, interacts with a greater power 

system, e.g. low-voltage power grid. It consists of the following factors: component ratio (CR) – 

describes the proportion between on-site generation and load; storage ratio (SR) – gives a 

qualitative indication of how well on-site generation is supported by on-site storage; 

intermittency ratio (IR) – indicates how reliable the component is at supplying energy. As 

mentioned in chapter 3 CR and SR factors are between -1 and 1, and IR varies from 0 to 1.  

Table 31 summarizes the calculated ratios for the grid citizenship tool described in section 

3.5.3. Unfortunately, not for all case studies all input data were available, therefore some results 

are missing. However, looking on the gathered data it can be concluded that seven case 

studies, all having PV installation, are not very reliable source of energy and may affect grid’s 

voltage stability, as the IR is close to zero. Only case study SB4, due to presentence of battery, 

and case study SB5, which is equipped with micro CHP, have more constant availability of 

assets. High SR values indicate that none of the buildings have significant storage resources, 

which can broadly be understood as both batteries, heat storage tanks and building construction 

or HVAC systems. It may result in limited capabilities to quick respond to grid signals / needs. 

Calculated component ratios for study case SB3, SB4 and SB7 indicates quite good proportion 

between the generation and load as they are close to zero. 

Table 31. Citizenship ratios for case studies 

Case study SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 

CR - - -0,190 -0,190 - - -0,062 - - 

SR 1 1 1 0,556 1 1 1 1 - 

IR 0,216 0,216 0,269 0,431 0,899 0,241 0,247 0,206 0,223* 
‘-‘ input data unavailable 
* storage capacity not included 
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This tool gives a quite good estimation of possible negative or positive building’s influence on 

the power grid, with the advantage of not requiring any power grid inputs. Moreover, the grid 

citizenship tool may have potential to investigate the influence of the energy storage with 

building construction and/or HVAC systems on the building-grid interaction. However, it should 

be noted that threshold of good or bad “citizenship” may differ between various power grids 

and/or particular feeders. Further analysis is needed for buildings  connected to more than one 

utility grid, e.g. power grid and district heating/cooling. In such cases the building’s energy 

system citizenship can be a useful tool for energy system designers and planners. 
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5.4 RESULTS USING HOURLY OR SUB-HOURLY RESOLUTIONS 

Table 32 shows the differences in values of the net exported energy for monitored test cases 

(MB3, MB6 and MB7) where sub hourly values are available (12 min, 5 min and 1 min, 

respectively). The values presented in the table are the minimum and the maximum values, 

together with some statistical quantities. Although differences between hourly and subhourly 

values at percentiles 1%,, 5%, 99% and 95%, significant differences can be appreciated for 

peak values. These differences are higher for minimum values (up to 63%), delivered energy, 

than for the maximum values (up to 15%), exported energy. These results are consistent with 

previous findings showing that averaging has higher impacts on delivered than exported energy 

[25]. The explanation for this is that for PV power generation the fluctuations are deviations (due 

to cloud movements) from a well-defined maximum clear-sky radiation. Averaging moves the 

occasionally lower values closer to the maximum. For the load, it is the other way around: There 

is typically a low base load with occasional peaks. Averaging move these high peaks closer to 

the base load. The results in [25] also shows that despite high impacts of averaging on 

individual building loads, the impacts on the aggregate load of a building cluster are lower 

(mainly for net delivered power), since random coincidence smoothens the load. It was found 

that in simulations of a distribution grid, the simulated voltage levels were robust to averaging of 

individual load profiles since the voltages depend mainly on the total power flow, to which a big 

cluster of buildings contributes. In order to characterize grid interaction with Net ZEB buildings, 

it is suggested to work with high resolution values (5 min, 10 min. etc.) better than working with 

hourly values. In case of using simulation programs, inputs related to the load (e.g., occupancy 

profiles) should be able to handle stochastic behaviours. If the interest is to have result at 

cluster of building level, working at lower resolution (30 min, 1 hour) is enough to have robust 

conclusions. However, if we have flexible users/buildings that respond automatically to e.g. 

hourly prices, a problem  could be that powers aggregate at the shifts from one price to the next 

(loads start simultaneously as soon as the price reaches a favourable level), and then the 

instantaneous powers could be very high – then a higher resolution would be needed also for 

analysis at cluster level. 
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Table 32. Statistical analysis of net export for test cases MB3, MB6 and MB7 using subhourly values and 
hourly averaged  values. Values are in kW. 

Case study 

Net Exported 

MB3 

hourly 

MB3 

Subhourly 

-12 min- 

 
MB6 

hourly 

MB6 

Subhourly 

-5 min- 

 
MB7 

hourly 

MB7 

Subhourly 

-1 min- 

         -6.22 -7.41  -7.03 -11.21  -5.01 -8.16 

     -4.14 -4.39  -3.89 -5.09  -3.19 -3.89 

     -3.14 -3.23  -2.64 -3.21  -2.32 -2.52 

         -1.42 -1.41  -1.08 -1.13  -1.06 -0.81 

         0.303 0.286  2.94 3.52  0.00 0.00 

      5.58 5.74  4.48 4.75  3.83 3.99 

      7.64 7.84  4.81 5.00  6.46 6.76 

           8.704 9.32  5.39 5.29  6.87 7.88 

                  1.72 1.70  4.02 4.65  1.06 0.807 

            14.93 16.73  12.42 16.57  11.89 16.046 
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6 CONCLUSIONS AND FUTURE RESEARCH WORK 

In this report various load match and grid interaction indicators currently used for evaluating 

Zero Energy Buildings have been investigated. The main goal of the study was to identify the 

advantages and drawbacks of the analysed indicators, and indicate which group of users they 

are most suitable for. The analysis was made using only high resolution data, this means hourly 

or sub-hourly data from monitored or simulated buildings. Moreover, graphical systems to 

represent in an understandable way the yearly or daily variation of the indexes have been 

presented. 

6.1 LOAD MATCH FACTORS 

The hourly values of the cover factors (namely, the load cover factor and the supply cover 

factor) give a quite good picture of the correlation between on-site demand and supply of 

energy. It is possible to illustrate both the daily and seasonal effect, the production pattern of 

different renewable energy technologies, and applied operation/control strategies. The 

advantage of factors over energy demand and energy production profiles is the possibility to 

take into account the influence of different types of storage, e.g. batteries, building thermal 

mass. Moreover, when computing the load cover factor, we can investigate the influence of 

different strategies and measures of load modulation, e.g. demand side manager. The hourly 

supply cover factor is a good indicator of when and how much of the on-site supply is self-

consumed, and thus indicates the periods when building acts as supplier of energy. As 

mentioned by [5], the definition of the cover factors can be extended for non-energy related 

assessment, e.g. economy, emissions. It should be noted that without knowing the 

characteristics of the local energy systems, it should not be concluded if high or low cover 

factors are preferable. The losses-of load probability (LOLP) factor shows how often the on-site 

supply does not cover the on-site demand, and thus how often energy must be supplied from 

the grid. Using the LOLP factor, designer can evaluate various load control strategies. The 

results presented here correspond mainly to all-electrical buildings with the exception of some 

buildings provided with CHP system. On-going work is carried out recently at international level 

with the objective to generalize load matching indexes [20] [30] but these have not been 

analysed in this report. 
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6.2 GRID INTERACTION FACTORS 

Grid interaction, refers to the energy exchange between the building and the power grid. This 

report has analysed some of these grid interaction indicators from the building perspective. It is 

clear that detailed analysis of the influence of an increasing number of Net ZEB in the grid 

requires knowledge about the grid topology, the stochasticity of the building consumption, and 

the control systems in both the building and the grid side. However, part of this knowledge lacks 

when individual buildings are designed, especially in the early design phases or when simplified 

energy assessment tools are used. Graphical representation of net exported energy in load 

duration curves has been proven to be a useful way to concentrate a lot of information in the 

same graph: delivered and exported peak values, amount of time when the building is exporting 

or demanding energy to or from the grid, period when the building is self-sufficient if a storage 

system is present, etc. Several Net ZEBs could be compared if this information is presented in a 

normalized form related to the connection capacity, together with information on what extent the 

building is using the grid. Generation Multiple (GM) is an index which relates peak values for 

exported/delivered energy and also can be used with generation/load values.  Dimension Rate 

(DR) and Connection Capacity Credit (Ec,des and Ec,ref(G=0)) relates the building with the electrical 

grid although the designed connection capacity, Edes, needs to be known which has been 

proven is not the case in some of the simulated test cases. These indexes can be used to make 

simple analysis in the case of cluster of buildings. Although some general trends have been 

identified in the results, it should be noted that further studies are needed in order to define 

reference GM values for particular building topologies, cluster of buildings, climates, which 

could be used as a rule-of-thumb for grid/building designers.  
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Another important aspect is to explore the ability to buildings to contribute in a positive way in a 

context where a high amount of renewables sources are in the grid, being the buildings 

themselves part of that system with the introduction of Net ZEB concept. This ability has been 

introduced as the “flexibility” of the buildings. But although investigations in buildings in Smart 

Grid has been carried out, the research on how flexibility in buildings can help stabilize the 

future energy system and thereby facilitate a large role out of renewable energy sources is still 

in its early beginning. The investigations have mainly focused on how to control a load and not 

to optimize the flexibility of the buildings. There is at the moment no overview of how much 

flexibility different buildings and usage of building may be able to offer to future energy systems. 

Flexibility is given by the storage capacity in the building or the ability to vary its load or curtail 

its generation system. Number of equivalent hours of storage gives some information about the 

storage capacity of the building. On the other hand, statistical analysis of net exported energy 

and grid interaction indexes (Generation Multiple and Dimensioning Rate) give information 

about peak load variations. From this information, it can be studied if certain percentage of time 

we are able to reduce the loads or curtail the energy generation. Besides Dimensioning Rate, 

also the Capacity Factor is an index that relates the building with the capacity connection with 

the grid. In any case, when evaluating the flexibility of a building, it is necessary to compare the 

behaviour of a building to a reference case or to compare two extreme cases with different 

strategies. Then information about flexibility will be derived from the comparison of some of the 

proposed load match and grid interaction indexes. In order to evaluate flexibility from 

owner/user perspective economical cost and user acceptance are two factors or constraints that 

have not been analysed in this report and they should be considered in future research. 

Finally, report concluded that sub-hourly analysis will give more accurate information and 

differences in peak values  can be significant if hourly data are used respect to sub-hourly data. 

If detailed grid interaction analysis at individual building level is needed we should work with 

measured values or go for a detailed sub-hourly simulation. At cluster level, using hourly values 

is an appropriate solution in most of the cases. 
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