To achieve nearly net zero energy use, all buildings in future will need to be more efficient and optimized. As new buildings are already well insulated in certain industrialised countries, the focus is shifting to limiting space heating energy consumption by reducing ventilation demand. Low energy buildings need to be airtight and energy demand for ventilation is often reduced by lowering the ventilation rate to the minimum necessary. Each of these can have adverse impacts on indoor air quality (IAQ). This project is therefore investigating how to ensure that future low energy buildings are able both to improve their energy performance and to provide comfortable and healthy indoor environments.

### Project Objectives

1. Provide a scientific basis for the design and operational strategies of buildings that have minimal energy consumption, and at the same time maintain very high standards regarding indoor environmental quality based on the control of sources, sinks and flows of heat, air, moisture, and pollutants under in-use conditions.

2. Collect and provide data about properties for transport, retention and emission of chemical substances in new and recycled materials under the influence of heat and moisture transfer.

Reducing the amount of fresh air supplied to a building would save energy, but however may increase the risk of poor indoor air quality. Therefore, it is very important to find the ideal balance between energy efficiency and the need for ventilation. The aim of this project is to use existing data and tools, which in combination give an integrated picture of the air flow, hygrothermal and air quality conditions in whole buildings with a focus on optimisation of their use and operation. This should achieve energy efficiency alongside providing healthy and comfortable indoor environments.
INTERNATIONAL ENERGY AGENCY
The International Energy Agency (IEA) was established as an autonomous body within the Organisation for Economic Co-operation and Development (OECD) in 1974, with the purpose of strengthening co-operation in the vital area of energy policy. As one element of this programme, member countries take part in various energy research, development and demonstration activities. The Energy in Buildings and Communities Programme has co-ordinated various research projects associated with energy prediction, monitoring and energy efficiency measures in both new and existing buildings. The results have provided much valuable information about the state of the art of building analysis and have led to further IEA co-ordinated research.

EBC VISION
By 2030, near-zero primary energy use and carbon dioxide emissions solutions have been adopted in new buildings and communities, and a wide range of reliable technical solutions have been made available for the existing building stock.

EBC MISSION
To accelerate the transformation of the built environment towards more energy efficient and sustainable buildings and communities, by the development and dissemination of knowledge and technologies through international collaborative research and innovation.

The planned deliverables from this project are:
- definitions of IAQ performance metrics,
- mechanistic emission source and sink models to estimate pollution loads under realistic environmental conditions,
- a database of material storage and transport properties, as well as pollution loads in existing buildings,
- a modelling framework and design tool for integrated and coordinated design of low energy and high IAQ buildings,
- a guidebook on operational strategies for optimal energy performance and good IAQ in residential buildings,
- a report presenting and analyzing residential green buildings that achieve optimal energy and IAQ conditions under various climatic situations, and
- recommendations for regulatory authorities and guidelines for occupants and building operators.

The project beneficiaries will be:
- building designers (engineers and architects),
- manufacturers of building materials and building services systems,
- regulatory authorities who stipulate required ventilation and energy performance requirements, and
- operators and users of buildings.

Project duration
Ongoing (2016 - 2020)

Operating Agent
Prof Carsten Rode
Department of Civil Engineering
Technical University of Denmark
Nils Koppel’s Allé, Building 402
2800 Kgs. Lyngby
DENMARK
car@byg.dtu.dk

Participating countries
Austria, Belgium, Canada, P.R. China, Czech Republic, Denmark, France, Germany, Japan, R. Korea, the Netherlands, New Zealand, Norway, UK, USA

Observers: Estonia,

Further Information
www.iea-ebc.org

Published by: EBC Executive Committee Support Services Unit
© 2019 AECOM Ltd on behalf of the IEA Energy in Buildings and Communities Technology Collaboration Programme
www.iea-ebc.org