Track 5: Financing

Session 4: Deeper Savings in Financed Projects

Extending the Reach of Campus Renovation through Combined Financing

Mark "Dusty" Wheeler, Honeywell Phil Smith, Honeywell August 12, 2015

Phoenix Convention Center • Phoenix, Arizona

Learning Objectives

- Define Energy Performance Contracting (EPC) as a new way to scale up the number and pace of deep energy refurbishment in the public sector
- Describe how Energy Performance Contracting is contributing to overcome the scarcity of public funding
- Describe how combined financing strategies can be used to deliver large-scale deep energy retrofits in federal government facilities
- Apply the lessons learned from the example project to improve the effectiveness of this strategy on future projects with similar challenges

Presentation Outline

- Background: Issues, Challenges
- Case Study: Intelligence Community Campus Bethesda
 - Project Overview
 - Utility Energy Services Contract
 - Baseline / Existing Conditions
 - Phased Modeling Challenges
 - Implementation in Phases
 - Azimuth Corrections
 - Lessons Learned
- Summary / Benefits

- Budget Pressure / Capital Funding Constraints
- Repurposing of Federal Property Holdings
- Energy Efficiency / Sustainability Mandates
- Energy Security / Reliability Concerns
- Accountability for Energy Performance

The Challenge

– Combining Renovation with ESPC

- Energy retrofits are less costly to implement during major building renovations, but renovations and energy upgrades are usually performed separately
- Combining them requires a method of integrating the performance of a general contractor (performing renovations) and an ESCO (installing energy conservation measures)
- Not easy to coordinate the activities of the two contractors...

Source: Extract from slide used in presentation by Cyrus Nasseri, FEMP, at DOE ESPC Contract Holders meeting on October 28, 2014

Case Study – UESC at ICC-B

Keys to Success

- Coordination
- Partnership
- Innovation
- Reliability
- Flexibility
- Value

ICC-B UESC Development Team

Owner

Office of Director of National Intelligence

Executive Agent

Defense Intelligence Agency

- **Program Management Office (PMO)**
- Markon Solutions

Former NGA Sumner Campus

Existing Facilities (prior to renovation)

Original Campus E	Building List
--------------------------	---------------

Building Name	Square Footage (Gross)	Year Built	Building Status
Erskine Hall	<400,000	1946	To be Renovated
Abert Hall	<95,000	1962	To be Demolished
Emory Building	<15,000	1963	To be Demolished
Roberdeau Hall	<140,000	1966	To be Renovated
Maury Hall	<155,000	1988	To be Renovated
Visitor Center	<1,500	2005	To be Demolished

ICC-B Campus Vision

ICC-B ECM Descriptions

ECM #	ECM Description
ECM-1	New Central Utility Plant (CUP)
ECM-2	New AHUs and Fan Powered Terminal Devices with Control Strategies
ECM-3	Airside Energy Recovery
ECM-4	Upgrade Campus Wide Energy Management System (EMS)
ECM-5	New Gas Fired Water Heaters
ECM-7	Lighting Upgrades and Lighting Controls
ECM-8	New Backup Generators
ECM-11	Photovoltaic (PV) Systems
ECM-13	Solar Domestic Hot Water Generation
ECM-15	Operations and Maintenance (O&M)
ECM-18	Additional Back-Up Chiller for Maury Hall
ECM-19	Smart Power Strips

ICC-B UESC Program Elements

UESC Structure

- Phase I (Base): CUP Construction
- Phase II: Roberdeau Hall ECMs
- Phase III: Erskine Hall ECMs
- Phase IV: Maury Hall ECMs

Savings Goals

- Reduce up front costs
- Energy efficiency
- Maintenance & Repair cost avoidance

10,400 Square Foot Central Plant (basement of

- **Electrical Generation**
 - One: 2.0 MW Diesel Generator
- **Chilled Water**

Centrum)

- Three: 1,100 Electric VFD Centrifugal Chillers
- One: 340 Ton Heat Recovery Chiller

- Hot Water Condenser Boilers •
 - Three: 4MMBtu/Hr

2015

2017

lot Water Boiler

800

2.500

Master Plan	Square Footage	Campus Population	
		4 MMBtuh Condensing	H

400,000

900,000

ICC-B UESC Phase I: Equipment Elements

1100-ton Chiller

ICC-B UESC Phases I and II

• Phase I (CUP in basement of Centrum Bldg) -- Original

 UESC contractor designs and installs equipment and systems comprising the Central Utility Plant (CUP) in space prepared by the SATOCC contactor – the CUP will provide utilities to the entire campus at end-state

• Phase I (CUP in basement of Centrum Bldg) -- Revised

 Essentially the same as originally envisioned, but changes required to address issues associated with structural nature of space provided by SATOCC contractor to the UESC contractor

• Phase II (Roberdeau Hall renovation) -- Original

- UESC contractor furnishes items of mechanical and electrical equipment to SATOCC contractor as Government Furnished Equipment; UESC contractor installs Building Automation System (BAS)
- Phase II (Roberdeau Hall renovation) -- Revised
 - Essentially the same as originally envisioned, but changes required due to redesign of mechanical and electrical systems serving tenant spaces (National Intelligence University)

ICC-B UESC Phases III and IV

• Phase III (Erskine Hall renovation) -- Original

- UESC contractor furnishes items of mechanical and electrical equipment to SATOCC contractor as Government Furnished Equipment; UESC contractor installs Building Automation System (BAS)
- Phase III (Erskine Hall renovation) -- Revised
 - UESC contractor handles tenant fit-out spaces on Floors 4 and 5 as originally envisioned, but designs and installs core mechanical and electrical systems in the building
- Phase IV (Maury Hall renovation) -- Original
 - Expected to be similar to Phases II and III, but more modest in scope; PV (which was initially going to be split between phases) aggregated and included in this phase to minimize disruption and realize economies of scale
- Phase IV (Maury Hall renovation) -- Revised
 - Essentially the same as originally envisioned, but O&M responsibility will be picked up by the UESC contractor in advance of renovation activities (Maury Hall is currently occupied)

Baseline and Existing Conditions Modeling Challenges

- Buildings largely unoccupied during IGA development
- Last Full Occupancy period in 2008
- Inability to conduct baseline performance testing
- Establishing the savings baseline
 - Demolished buildings
 - Addition of Centrum
 - Building envelope renovation
 - Space use changes

2008 Baseline Campus Model

- Model includes all original campus buildings
- Original distributed chilled water distribution (5,285tons)
- Original central steam system (1,200BHP)
- Mostly 24hr operating schedule
- High internal gains from analyst stations / computer rooms

Baseline Model Calibration

- Using the 2008 Utility Data
 - Electric data missing the demand profile
 - Combined natural gas and fuel oil usage
- Actual Weather Data File Created for model calibration
- Plug load / IT Load estimates based on site surveys and maintenance personnel interviews
 - Plug Loads: 2.0W/ft² (Erskine, Abert, Emory) 3.0W/ft² (Roberdeau, Maury)
 - 1,500kW of IT Data Center loads (Primarily Maury and Erskine)
- Estimated steam system losses based on surveys, interviews and overall energy balance

Baseline Calibration Results

Actual vs DOE-2 Predicted Electric ENERGY (kWh)

Actual vs DOE-2 Predicted Natural Gas ENERGY (Therms)

MBE -0.2%

Energy Exchange: Federal Sustainability for the Next Decade

Adjusted Baseline

- Added the Centrum Building
- Upgrades to building envelope thermal performance
- Expanded 3rd floor RH
- Significant increase in window –wall ratio
- Space use based on projected tenants
- Buildings served by existing chilled water / steam system

ECM Modeling Results

- 39% energy usage reduction from 2008 Baseline
- ~ \$2,000,000/yr cost savings from 2008 Baseline
- 47% energy usage reduction from Adjusted Baseline
- ~ \$1,100,000/yr cost savings from Adjusted Baseline

Energy-related (O&M) Savings

- Baseline / Existing Conditions
 - Multiple Plants (3 separate locations)
 - Vintage Equipment; "Breakdown" Maintenance following BRAC decision
 - High Pressure Steam Boilers (24/7 monitoring)
 - Actual O&M Expenditures, FY2009 (NGA)
- Savings Opportunities
 - Consolidate Plant Equipment
 - Capture Near-Term Repair/Replacement Cost Avoidance
 - Condensing Boilers => Manpower Reductions
 - Bottoms-up Performance-Based Costing
- O&M Savings Value
 - \$2.4M for Central Plant (Year 1 value)
 - \$2.1M for Campus Buildings (Year 1 value)

Implementation Phases: Phase I

- Design and Construction of the CUP
 - DBT was at 65% Design for the Centrum
 - UET was progressing from 35% design to construction documents for Mechanical and Electrical systems
 - Extensive coordination with DBT for utility placeholders
 - CUP estimated to be online by Summer 2015

Implementation Phases: Phase II

- The Renovation of Roberdeau Hall
 - UET's involvement started at the DBT's 35% Level
 - UET provide alternative HVAC and lighting design
 - GFCI Equipment:
 - HVAC & DHW
 - Main Electrical Equipment
 - Lighting and Controls
 - BAS provided and installed by the UET

Implementation Phases: Phase III

- Design and Construction of Erskine Hall
 - Hybrid approach = GFCI and Design Build
 - UET will Design and Build the core mechanical and electrical systems related to the DFS ECMs
 - UET will progress the DBT's 65% design to construction documents
 - GFCI Equipment will be provide for 2 floors:
 - VAV boxes
 - Lighting and controls

Implementation Phases: Phase IV

- Design and Construction of Maury Hall
 - Occupants will be moved from the space in November
 - New tenants return April 2016
 - Significant increase in space internal loads
 - Going from 6CPU workstations to 9
 - $\circ\,$ Expansion of the data center
 - Require replacing the HVAC equipment
 - Add chiller capacity to the plant
 - Campus wide PV system is slated for this phase
 - Estimated production goal is 1MW
 - Render Roberdeau Hall NZEB

Azimuth Corrections

- Flexibility Exhibited by Huntsville
- Original Course was changed
- Phase I
 - CUP water supply and return temperatures
 - Supplemental Structural Steel
 - Installation of Utilities to support future phases

Phase II

- UET's HVAC Approach
- Contract Award requirements
- GFCI Modifications due to Design Progression
- GFCI Delivery Schedules

Azimuth Corrections

Phase III

- Contract Award requirements
- Maintain the HVAC Approach from Phase II
- Provide additional shafts to house utilities outside the DBT's obligations
- Provide additional electrical closets

Phase IV

• TBD

Lessons Learned

- Combined Financing extended the mission on Campus
- Earlier Calibration with all stakeholders
 - Contractual Requirements
 - Design Efforts
 - Scope Gaps
- Scheduling Constraints
- Required Instant and Continuous Communication

Conclusions

- Energy Performance Contracting (EPC) represents a viable means for enhancing energy performance in Federal new construction and/or major renovations
- EPC can be used to provide funding for Deep Energy Retrofits that might otherwise be unaffordable
- Blending of EPC and appropriated funding is challenging on many levels – needs buy-in from all stakeholders
- Specific methodology can be adapted during execution to meet evolving program requirements
- Early consideration of blending EPC with appropriations in facilities acquisition strategy development is recommended

Questions?

Mark "Dusty" Wheeler P.E.

dusty.wheeler@honeywell.com

Phone: 703-999-8719 Cell: 703-789-3265

Phillip L. Smith P.E. phil.smith2@honeywell.com

Phone: 770-632-0672 Cell: 770-633-6171